七年级下第二章 平行线与相交线

文档属性

名称 七年级下第二章 平行线与相交线
格式 rar
文件大小 271.3KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2010-10-10 19:18:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第二章 平行线与相交线
●课时安排
7课时
第一课时
●课 题
§2.1 余角与补角
●教学目标
(一)教学知识点
1.余角、补角及对顶角的定义.
2.余角、补角及对顶角的性质.
(二)能力训练要求
1.经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力.
2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题.
(三)情感与价值观要求
通过在具体情境下的讨论,让学生理解基础知识的同时,提高他们理论联系实际的观念.
●教学重点
1.互为余角、互为补角的定义及其性质.
2.对顶角的定义及性质.
●教学难点
互为余角、互为补角、对顶角的定义的理解.
●教学方法
讲练结合法
教师在充分发挥学生的主观能动性的同时,来与学生进行交流、讨论,使之能运用本节内容解决一些实际问题.
●教学过程
Ⅰ.创设现实情景,引入新课
[师]在上册第四章“平面图形及其位置关系”中,我们学习了“平行”与“垂直”,大家想一想:什么是平行线?
[生]在同一平面内,不相交的两条直线叫做平行线.
[师]很好,在日常生活中,我们随处可见道路、房屋、山川、桥梁……等这些大自然的杰作和人类的创造物.这其中蕴涵着大量的平行线和相交线.
下面大家来看几幅图片:(出示投影片:P49的桥的图片,宫殿、建筑物、门等的图片)
你能从这些图案中找出平行线和相交线吗?
(同学们踊跃发言,都能准确地找出其中的平行线和相交线)
[师]同学们找得都对,说明大家掌握了所学内容.从今天开始,我们将深入学习这方面的内容:第二章 平行线与相交线.
在这一章里,我们将发现平行线和相交线的一些特征,并探索两条直线平行的条件,我们还将利用圆规和没有刻度的直尺,尝试着作一些美丽的图案.
相信大家,一定会学得很好.
图2-1
Ⅱ.讲授新课
[师]我们知道,光的反射是一种常见的物理现象,通过如图的实验装置我们可以验
证光的反谢定律:
活动内容:参照教材p59光的反射实验提出下列问题:
(1) 模拟试验:通过模拟光的反射的试验,为学生提供生动有趣的问题情景,将其抽象为几何图形,为下面的探索做好准备。
(2)利用抽象出的几何图形分三个层次提出问题,进行探究。
i 说出图中各角与∠3的关系。将学生的回答分类总结,从而得到余角、补角的定义。
ii 图中还有哪些角互补?哪些角互余?在巩固刚刚得到的概念的同时,为下一个问题作好铺垫。
iii 图中都有哪些角相等?由此你能够得到什么样的结论?在学生充分探究、交流后,得到余角、补角的性质。
由此,我们得到了一个新的概念:互为余角.即:如果两个角的和是直角,那么称这两个角互为余角(complementary angle),也就是说其中一个角是另一个角的余角.
只要有∠BDC+∠1=90°,就可知道∠1与∠BDC互为余角,反过来知道∠1与∠BDC是互为余角,就一定知道∠1与∠BDC的和为直角.
再之:∠1与∠BDC是互为余角就是说:∠1是∠BDC的余角,∠BDC也是∠1的余角.
大家看老师手里拿两个三角板(一边演示,一边叙述):这一个三角板的60°的角与另一个三角板的30°的角加起来正好是90°,那么我们说这两个角是互为余角.
同学们应注意:(强调)
(1)互为余角是对两个角而言的.
(2)互为余角仅仅表明了两个角的数量关系,而没有限制角的位置关系.
[生]老师,我们知道了:两个角的和是直角,则这两个角是互为余角.刚才我们还讨论了:∠1+∠ADF=180°,∠EDB+∠1=180°.
那么这样的两个角又叫什么呢?
[师]这位同学问得好,这就是我们要学习的另一个概念:互为补角.即:如果两个角的和是平角,那么称这两个角互为补角(supplementary angle).
互为补角的概念的理解与互为余角的理解基本一样.哪些同学能尝试的说一下呢?
[生甲]只要满足∠1+∠ADF=180°,就可知道∠1与∠ADF是互为补角.反之知道∠1与∠ADF是互为补角,就一定可知道∠1与∠ADF的和是平角.
[生乙]∠1与∠ADF是互为补角,就是说:∠1是∠ADF的补角,∠ADF也是∠1的补角.
[生丙]互为补角也是对两个角而言的.与角的大小有关,而与位置无关.
[生丁]∠EDB与∠1也是互为补角.
[师]同学们回答得真棒.互为余角、互为补角都是针对两个角而言的,仅仅表示了两个角之间的数量关系,并没有限制角的位置关系.
好,下面大家来想一想.(出示投影片§2.1 A)
在下图中,CD与EF垂直,∠1=∠2.
(1)哪些角互为余角?哪些角互为补角?
(2)∠ADC与∠BDC有什么关系?为什么?
(3)∠ADF与∠BDE有什么关系?为什么?
图2-2
(同学们分组讨论,得结论)
[生甲]在图中:∠1与∠ADC、∠2与∠ADC、∠BDC与∠1、∠BDC与∠2都是互为余角.
∠1与∠ADF、∠EDB与∠1、∠ADF与∠2、∠EDB与∠2都是互为补角.
[生乙]∠ADC与∠BDC相等,因为:
∠ADC+∠1=90°,∠BDC+∠1=90°
所以:∠ADC=90°-∠1=∠BDC.
[生丙]∠ADC与∠BDC相等的理由还可以这样说:因为∠ADC+∠1=90°,∠BDC+∠2=90°,所以∠ADC=90°-∠1,∠BDC=90°-∠2,又因为∠1=∠2,所以∠ADC=∠BDC.
[生丁]老师,是不是这样:∠ADC是∠1的余角,∠BDC也是∠1的余角,所以∠ADC与∠BDC就相等.因此可以说:同一个角的余角相等.∠ADC是∠1的余角,∠BDC是∠2的余角,而∠1与∠2相等.所以∠ADC与∠BDC相等.因此可以说:相等的角的余角相等.
[师]丁同学总结得很好.大家的意见怎么样?
[生齐声]丁同学总结得对.
[师]很好,这就得出互为余角的性质:
同角或等角的余角相等.
接下来看第三个问题:
(同学们踊跃发言,得出结论)
[生]∠ADF与∠BDE相等.因为∠1+∠ADF=180°,∠1+∠BDE=180°,所以,∠ADF=180°-∠1=∠BDE.还可以这样说:
因为∠1+∠ADF=180°,∠2+∠BDE=180°,所以∠ADF=180°-∠1,∠BDE=180°-∠2,又因为∠1=∠2,所以∠ADF=∠EDB.
因此得出结论:
同角或等角的补角相等.
[师]同学们表现得很好,通过讨论,得出互为余角、互为补角的性质:
同角或等角的余角相等.
同角或等角的补角相等.
接下来,我们议一议.
(可用电脑演示,也可用实物剪刀实际操作,然后提问.)(出示投影片§2.1 B)
(1)用剪刀剪东西时,哪对角同时变大或变小?
(2)如果将剪刀的图形简单表示为下图,请问:∠1与∠2的位置有什么关系?它们的大小有什么关系?为什么?
图2-3
[生甲](1)用剪刀剪东西时,相对的角同时变大或变小.
[生乙]图中的∠1与∠2有公共的顶点O,且角的两边互为反向延长线.
∠1与∠2相等,因为∠1是∠BOC的补角,∠2也是∠BOC的补角.由同角的补角相等,可得∠1与∠2相等.
[师]很好,像这样,直线AB与直线CD相交于点O,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫对顶角.
如图中的∠AOD与∠BOC也是对顶角.
由对顶角的概念可知,对顶角的本质特征是:两个角有公共顶点,两个角的两边互为反向延长线.
所以要在图形中准确地找出对顶角,需两看:
(1)看是不是两条直线相交所得的角;
(2)看是不是有公共顶点而没有公共边(或不相邻)的两个角.
另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个.
接下来大家想一想:对顶角有什么性质?
[生齐声]对顶角相等.
[师]好,“对顶角相等”是对顶角的重要性质.
下面大家来议一议(出示投影片§2.1 C)
如图(P52的上图)所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量角是多少度吗?你的根据是什么?
[生甲]根据对顶角相等,可以得出所量角的度数是40°.
[生乙]我利用补角可得出所量角的度数是180°-140°=40°.
[师]同学们能利用学过的有关事实解决实际问题,这很好.
下面我们来做一练习,以巩固所学内容.
Ⅲ.课堂练习
1.下图中有对顶角吗?若有,请指出,若没有,请说明理由.
图2-4
答案:图(1)、(2)、(3)中没有对顶角,因为这三个图形中的∠1、∠2不是两条直线相交所形成的.图(4)中有对顶角,分别是∠1与∠3;∠2与∠4.
2.判断对错
(1)顶点相对的角是对顶角.( )
(2)有公共顶点,并且相等的角是对顶角.( )
(3)两条直线相交,有公共顶点的角是对顶角.( )
(4)两条直线相交,有公共顶点,没有公共边的两个角是对顶角.( )
答案:× × × √
(举反例说明)
Ⅳ.课时小结
这节课我们学习了三个定义、三个性质,现在来总结一下:
定义:
互为余角:如果两个角的和是直角,则这两个角互为余角.
互为补角:如果两个角的和是平角,则这两个角互为补角.
对顶角:像这样直线AB与直线CD相交于O,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.
注意:
(1)互为余角、互为补角只与角的度数有关,与角的位置无关.
(2)对顶角的判断条件:
性质:
同角或等角的余角相等,同角或等角的补角相等.
对顶角相等.
Ⅴ.课后作业
(一)课本P52习题2.1 1、2、3
(二)1.预习内容:P53~54
2.预习提纲
(1)直线平行的条件是什么?
(2)同位角的概念.
(3)会用三角尺过已知直线外一点画这条直线的平行线.
●板书设计
§2.1 台球桌面上的角
一、台球桌面上红球滑过的痕迹
图2-5
∠1+∠ADC=90°
∠1+∠BDC=90°
∠1+∠ADF=180°
∠1+∠BDE=180°
二、互为余角、互为补角的定义
三、互为补角、互为余角的性质
同角或等角的余角相等.
同角或等角的补角相等.
四、对顶角的定义
五、对顶角的性质:
对顶角相等.
六、练习
七、小结
八、作业1.习题2.1数学理解1,2
习题2.1问题解决1,2
第二课时
●课 题
§2.2.1探索直线平行的条件(一)
●教学目标
(一)教学知识点
1.直线平行的条件:同位角相等.
2.会用三角板过已知直线外一点画这条直线的平行线.
(二)能力训练要求
1.经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.
2.会用三角尺过已知直线外一点画这条直线的平行线.
3.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.
(三)情感与价值观要求
1.在探索和交流的活动中,培养学生与人协作的习惯.
2.培养学生理论联系实际的观点.
●教学重点
在操作、观察的基础上总结出直线平行的条件.
●教学难点
同位角的概念.
●教学方法
观察——探索——归纳
教师创设情景,使学生主动地、积极地参与学习活动,进行观察,探究,发现规律,从而找到直线平行的条件.
●教学过程
Ⅰ.创设现实情景,引入新课
[师]在日常生活中,人们经常用到平行线,那什么是平行线呢?
[生]在同一平面内,不相交的两条直线叫做平行线.
[师]好,在上册书中,我们简单了解了平行线,下面我们来复习回顾一下(出示投影片§2.2.1 A).
判断正误:
1.两条直线不相交,就叫平行线.( )
2.与一条直线平行的直线只有一条. ( )
3.如果直线a、b都和直线c平行,那么a、b就互相平行.( )
[生甲]第1句话是错的.只有在同一平面内的两条不相交的直线才是平行线.
(也可举例:如异面直线.学生只要说清即可).
[生乙]第2句话是错的.因为一条直线的平行线有无数条,只有经过直线外一点,才有且只有一条直线与已知直线平行.
[生丙]第3句是对的,它是平行线的一个性质.
[师]同学们分析得很好.下面我们来看一个生活中的实例(出示投影片§2.2.1 B)
如P53的上图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行
(同学们讨论)
[师]大家可以用课前裁好的线条在桌子上演示.
[生]木条a也与墙壁边缘垂直时,才能使木条a与木条b平行.
[师]大家经过讨论,得到了:若木条b与墙壁边缘垂直时,只有木条a也与墙壁边缘垂直时,才能使木条a与木条b平行.那么在同一平面内,两条直线除不相交外,还可能在什么情况下平行呢?这节课我们就来探索直线平行的条件.
Ⅱ.讲授新课
[师]大家拿出准备好的纸条,按如下方法来做一做(出示投影片§2.2.1 C)
如图(1)所示,三根木条相交成∠1,∠2,固定木条b、c,转动木条a.
图2-11
如图(2),在木条a的转动过程中,观察∠2的变化以及它与∠1的大小关系,你发现木条a与木条b的位置关系发生了什么变化?木条a何时与木条b平行?
改变图(1)中∠1的大小,按照上面的方式再做一做.∠1与∠2的大小满足什么关系时,木条a与木条b平行?
[师]同学们先独立操作、观察,找出结论,然后前后四人讨论,得出结论.
(学生动手操作,然后交流,教师指导、巡视)
[生甲]在转动木条a的过程中,看到∠1与∠2的大小关系为三种情况:大于、等于、小于;木条a与木条b的位置关系有两种情况:相交与平行;当∠1=∠2时,木条a与木条b平行.
[师]你们同意他的说法吗?
[生齐声]同意.
[师]好,这只是一种情况下得出的结论.如果改变∠1的大小,情况又如何呢?
[生乙]我们观察到的情况与甲同学说的一样.
[生丙]我注意到:只要∠2与∠1的大小相等,那么木条a、b就平行.
[师]是这样的吗?
[生齐声]是.
[师]好.由此可以看到:木条a、b的位置关系与∠1、∠2的大小关系密切相关,当∠1等于∠2时,木条a、b所在的直线就平行.那么∠1、∠2是什么样的角呢?
看图:
图2-12
直线AB、CD与直线l相交(或者说两条直线AB、CD被第三条直线l所截),构成八个角.∠1与∠2这两个角分别在直线CD、AB的上方,并且都在直线l的右侧,像这样具有位置相同的一对角称为同位角(corresponding angles),∠3与∠4也是同位角.
辨别同位角时要注意位置上的两个“同”字,在第三条直线的同旁,被截两直线的同方向.
下面大家看这个图中,还有没有其他的同位角呢?
[生甲]∠5与∠6是同位角.这两个角在直线l的右侧,又在直线CD、AB的下方.
[生乙]∠7与∠8是同位角.这两个角分别在直线CD、AB的下方,并且在直线l的左侧.
[师]很好,大家了解了同位角后,想一想刚才我们得到的:“当∠1=∠2时,木条a、b所在的直线平行”这个结论应该怎么叙述?
[生]从图中可知:∠1与∠2是同位角.所以可以这样说:同位角相等,两条直线平行.
[师]好,这样我们就得到直线平行的条件:同位角相等.即:平行线的判定:
同位角相等,两直线平行.
用几何符号表示:∠1=∠2→a∥b
在上学期,我们学过了利用移动三角尺的方法来画平行线,那现在大家来分组讨论讨论.(出示投影片§2.2.1 D)
怎样用移动三角尺的方法画两条平行线?你能用这种方法过已知直线外一点画它的平行线吗?请说出其中的道理.
(学生分组操作、讨论)
[生甲](学生一边操作,一边叙述).先画一条直线,用一个三角尺的一边与这条直线重合,然后把第二个三角尺紧靠第一个三角尺,第二个三角尺不动,移动第一个三角尺,这样就可以画出与已知直线平行的直线.
用这种方法可以作:过已知直线外一点画它的平行线.
(图如下:AB∥CD,点P在CD上.)
图2-13
[生乙]画直线CD与AB平行的过程中,实际上使用了一个三角尺的一边和另一个三角尺的一个角.一个三角尺不动,在另一个三角尺平移的过程中,那个角的大小不变,而且从一个位置平移到另一个位置,两个位置上的那个角构成了同位角关系.“同位角相等,两直线平行.”
[师]同学们分析得很好.在画已知直线的平行线时,实际就用到了“同位角相等,两直线平行”这个直线平行的条件.
好,下面大家动手画一画:过直线外一点画这条直线的平行线.
(学生动手操作,教师指导)
[师]好,同学们画得很好.接下来我们做练习,以巩固本节所学内容.
Ⅲ.课堂练习
课本P55随堂练习
1.找出图2-14点阵中互相平行的线段,并说明理由(点阵中相邻的四个点构成正方形).
图2-14 图2-15
答案:AB∥CD、EF∥GH
因为线段EF、GH与线段AB、CD相交所成的锐角都是45°.
2.如图2-15,∠1=∠2=55°,∠3等于多少度?直线AB、CD平行吗?说明你的理由.
答案:∠3=55°,因为∠3与∠2是对顶角,对顶角相等,所以∠3=55°.
因为∠1=∠2=55°,∠3=55°,所以可得∠1=∠3.又因为∠1与∠3构成的是同位角.由同位角相等,两直线平行可得:AB与CD平行.
Ⅳ.课时小结
本节课我们主要探讨了直线平行的条件:“同位角相等,两直线平行”.还认识了同位角,并且会用三角尺过已知直线外一点作这条直线的平行线.
到现在为止,我们就有了三种判定两直线平行的方法:
(1)定义(不常用)
(2)如果两条直线都与第三条直线平行,那么这两条直线互相平行.
(3)同位角相等,两直线平行.
Ⅴ.课后作业
一、课本P55习题2.2 1、2
二、1.预习内容:P56~57
2.预习提纲:
(1)内错角、同旁内角的概念.
(2)两直线平行的条件.
●板书设计
§2.2.1 探索直线平行的条件
一、直线平行的条件:
1.同位角的定义.
2.直线平行的条件:
同位角相等,两直线平行
∠1=∠2→AB∥CD
二、议一议
画一画.
三、课堂练习
四、课时小结
五、课后作业
第三课时
●课 题
§2.2.2 探索直线平行的条件(二)
●教学目标
(一)教学知识点
1.会判断内错角、同旁内角.
2.直线平行的条件.
(二)能力训练要求
1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.
2.经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些实际问题.
(三)情感与价值观要求
创设情境,激发学生积极参与交流、学习,主动解决问题,鼓励其创造精神,并从中使他们受益.
●教学重点
两条直线平行的条件:角相等或互补.
●教学难点
两条直线平行的条件的应用.
●教学方法
探索发现法
教师创设现实情景,让学生积极主动地去探索、发现,使其找到解决问题的方法.
●教学过程
Ⅰ.创设现实情景,引入新课
[师]上节课我们探讨了直线平行的条件.谁来给大家总结一下:判定两条直线平行的方法.
[生]判定两条直线平行的方法到现在为止有以下三种:
①定义:即:在同一平面内不相交的两条直线是平行线.
②如果两条直线都与第三条直线平行,那么这两条直线互相平行.
③同位角相等,两直线平行.
[师]这位同学总结得很好.大家要会应用这些方法来判定两直线平行.下面来看一个实际例子.(出示投影片§2.2.2 A)
小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB.(如图2-23所示)
图2-23
小明身边只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?
[师]大家分组讨论一下.
[生甲]小明只有量角器,所以想到应该用“同位角相等,两直线平行”来判定.但图中又没有同位角,是不是应该找另外的角呢?
[生乙]我们说:两条线段平行是指这两条线段所在的直线平行.所以我想把这个图形中的上下边缘及线段AB都变成直线,则图形变为图2-24.
图2-24
在图中可以看到:∠1与∠2是同位角,∠3与∠2是对顶角,并且相等,所以只要∠1=∠3,则直线CD∥EF.
[生丙]实际上只需要把线段AB延长即可.
图2-25
[师]同学们讨论得很精彩,知道只要量出如图2-25所示的∠1与∠3的度数,就可知画板的上下边缘是否平行.那这两个角是什么样的角呢?两直线平行还有哪些条件呢?这节课我们来继续探讨:直线平行的条件.
Ⅱ.讲授新课
[师]大家看图2-26.
图2-26
直线AB、CD与EF相交(或者说:两条直线AB、CD被第三条直线所截),∠1与∠2这两个角都在直线AB、CD之间,并且∠1在直线EF的左侧,∠2在直线EF的右侧.像具有这种位置关系的角称为内错角(alternate interior angles).
注意:辨认内错角时,要看清两个角是否在被截两直线之间,是否在截线的两旁.
图中还有内错角吗?
[生]有,∠3与∠4是内错角.
[师]好,我们再看:∠1与∠3的位置关系如何呢?
[生]∠1与∠3,这两个角也都在直线AB、CD之间,但它们在直线EF的同一旁.
[师]同学们说得很好,我们把具有这种位置关系的角称为同旁内角.
[生甲]老师,我知道了,那么∠2与∠4也是同旁同角,是吧?
[师]对,那谁能说一说:辨认同旁内角要掌握什么呢?
[生乙]要看清两个角是否在截线的同旁,是否在被截两直线之间.
[师]很好,下面同学们看图,从中找出同位角、内错角、同旁内角.辨认时,一定要注意哪两条直线被哪一条直线所截.(出示投影片§2.2.2 B)
在下图中,找出所有的同位角、内错角、同旁内角.
图2-27
[生甲]∠1与∠2、∠3与∠4、∠5与∠6是同位角.∠4与∠6是内错角.∠4与∠2是同旁内角.
[生乙]还有呢:∠7与∠8是同位角,∠2与∠8是内错角,∠6与∠8是同旁内角.
[师]还有吗?
[生齐声]没有了.
[师]好.两条直线被第三条直线所截,形成了八个角,这八个角之间的关系要弄清楚.现在我们再来看那个实例——小明测画板上下边缘是否平行.(再次出示图形)
刚才我们经过讨论得知:当∠1=∠3时画板的上下边缘就平行.那么∠1与∠3是什么角呢?由此可得出什么结论呢?
[生]∠1与∠3是内错角.由此可得出:内错角相等,两条直线就平行.
[师]很好.由此我们又得出了直线平行的条件,或者说是判定两条直线平行的方法:
内错角相等,两直线平行.
同学们来叙述一下为什么.
[生]如图2-28,∠3与∠2是对顶角,相等,又由于∠1=∠3,所以∠2=∠1,因此可以得出AB∥CD.
图2-28
[师]同学们叙述得很好,即:
AB∥CD(内错角相等,两直线平行)
噢,三线八角中,我们能用同位角相等或内错角相等来判定两条直线平行,那同旁内角又如何呢?下面大家来议一议(出示投影片§2.2.2 C)
同旁内角满足什么关系时,两条直线平行?为什么?
(分组讨论、归纳)
[生甲]如图2-29,当∠1=∠2时,AB∥CD,而∠1+∠5=180°.
图2-29
所以猜想∠2+∠5=180°时,AB∥CD.
验证:当∠2+∠5=180°时,又∠1+∠5=180°(平角定义),所以由“同角的补角相等”,可得:∠1=∠2,因此由“同位角相等,两直线平行”可得:AB∥CD.从而可知:同旁内角互补,两直线平行.
[生乙]还可以这样验证:当∠2+∠5=180°时,又平角定义可知:∠3+∠5=180°,所以可得出:∠3=∠2,∠3与∠2是内错角,因此可由“内错角相等,两直线平行”得出:AB∥CD.
[师]很好.由此我们可得出什么结论?
[生齐声]同旁内角互补,两直线平行.
[师]很好.应用这个判定时可这样书写:∠2+∠5=180°→AB∥CD.
接下来,我们来做一做(出示投影片§2.2.2 D)
如图2-30,三个相同的三角尺拼接成一个图形.请找出图中的一组平行线,并说明你的理由.
图2-30
小华:AC与DE是平行的,因为∠EDC与∠ACB是同位角,而且又相等.
你能看懂她的意思吗?
小明:我是这样想的:∠BCA=∠EAC→BD∥AE.
你知道这一步的理由吗?
(学生动手操作,叙述后,再出示小明、小华的想法.)
[生甲]通过摆放,可知:∠CBA=∠DCE,而这两个角是同位角,所以BA∥CE.
[生乙]通过摆放,可知:∠B+∠BAE=180°,而∠B与∠BAE是同旁内角,所以BD∥AE.
[生丙]因为∠ACE与∠CED是内错角,且相等,所以AC∥DE.
……
(学生用自己的语言来叙述理由,课堂气氛活跃.)
[师]同学们叙述得真好,下面看一看小华与小明的理由,你们能看懂吗?
[生齐声]能.
[师]好,通过做一做,我们熟悉了直线平行的条件.在今后的学习中,要学会〖JP2〗直接应用.接下来同学们做练习以巩固所学内容.
Ⅲ?课堂练习
课本P57随堂练习
1.观察图2-31并填空.
图2-31
(1)∠1与 是同位角.
(2)∠5与 是同旁内角.
(3)∠2与 是内错角.
答案:(1)∠4 (2)∠3 (3)∠1
2.当图2-32中各角分别满足下列条件时,你能指出哪两条直线平行吗?
图2-32
(1)∠1=∠4,(2)∠2=∠4,(3)∠1+∠3=180°
答案:(1)∠1=∠4→a∥b
(2)∠2=∠4→m∥l
(3)∠1+∠3=180°→n∥l
Ⅳ.课时小结
本节课我们又探讨了直线平行的条件.到现在为止,我们学习了以下五种判定两直线平行的方法:
(1)定义(不常用)
(2)如果两直线都和第三条直线平行,那么这两条直线互相平行.
(3)同位角相等,两直线平行.
(4)内错角相等,两直线平行.
(5)同旁内角互补,两直线平行.
大家要注意结合已知条件选用适当的判定方法来判定两直线平行.
Ⅴ.课后作业
一、课本P58习题2.3 1、2、3、4.
二、1.预习内容:P59~60
2.预习提纲:
(1)平行线的特征有哪些?
(2)初步了解推理过程.
●板书设计
§2.2.2 探索直线平行的条件
一、内错角、同旁内角的概念.
二、直线平行的条件:


三、课堂练习
四、课时小结
五、课后作业
第四课时
●课 题
§2.3 平行线的特征
●教学目标
(一)教学知识点
1.平行线的性质
2.运用这些性质进行简单的推理或计算.
(二)能力训练要求
1.经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.
2.经历探索平行线的特征的过程,掌握平行线的特征,并能解决一些问题.
(三)情感与价值观要求
通过学生动手操作、观察,来发展他们的空间观念,培养其主动探索和合作的能力.
●教学重点
由两直线平行得到同位角相等、内错角相等、同旁内角互补.
●教学难点
平行线的特征与直线平行的条件的综合应用.
●教学方法
小组讨论法
学生在教师的指导下,进行以小组为单位讨论,最终得出平行线的特征.
●教学过程
Ⅰ.创设现实情景,引入新课
[师]前面两节课,我们共同探讨了直线平行的条件,哪位同学给大家叙述一下:直线平行的条件呢?
[生]同位角相等,两直线平行.
内错角相等,两直线平行.
同旁内角互补,两直线平行.
[师]很好.大家来观察上面的三个直线平行的条件的共同点是什么呢?
[生]都是由已知角相等或角互补,推出两直线平行.
[师]同学们总结得很对,那反过来,如果有两条直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
这节课我们来学习直线平行的特征.
Ⅱ.讲授新课
[师]我们来做一做(出示投影片§2.3 A)
如图2-36,直线a与直线b平行.
图2-36
测量同位角∠1和∠5的大小,它们有什么关系?图中还有其他的同位角吗?它们的大小有什么关系?
换另一组平行线试试,你能得到相同的结论吗?
[师]大家先画一组平行线,画平行线时要注意准确性,然后进行测量,最后分组讨论.
[生甲]我用量角器量得∠1的度数与∠5的度数相等,说明同位角相等.
[生乙]我用剪刀剪下∠1(或∠5),把它贴在∠5(或∠1)的上面,观察到这两个角相等.也能说明同位角相等.
[生丙]图中还有其他的同位角.如:∠2与∠6;∠3与∠7;∠4与∠8.
经过测量,我们知道这些同位角相等.
[生丁]这样,我们能不能说:同位角相等.
[生戊]不行.不是所有的同位角都相等.
如图2-37中的∠1与∠2是同位角,∠1是65°,∠2是50°,它们不相等.
图2-37
[师]同学们讨论得很精彩.那想一想:两条直线在什么情况下,同位角才相等?
[生齐声]两条直线平行时,同位角相等.
[师]是吗?我们再来画一组平行线,来验证一下.
(学生动手画图,测量后,教师动画演示,以帮助学生归纳)
[生]我们经验证,知道:两条直线只要平行,那么同位角就相等.
[师]噢,同位角相等是平行线特有的性质,不是凡同位角都相等,只有在两条直线平行的条件下,才相等.这样我们就得到了平行线的特征:同位角相等.
在两条直线平行的情况下,同位角相等,那此时内错角关系怎样?同旁内角关系怎样?下面我们再来探索:(出示投影片§2.3 B)
如图2-38,直线a与直线b平行.
图2-38
(1)图中有几对内错角?它们的大小有什么关系?为什么?
(2)图中有几对同旁内角?它们的大小有什么关系?为什么?
(3)换另一组平行线试一试,你能得到相同的结论吗?
(讨论方法同前)
[生甲]图中有2对内错角,分别是:∠3与∠6;∠4与∠5.
我用量角器测量了一下,得知:∠3与∠6相等,∠4与∠5也相等.
[生乙]不用测量也可以,因为直线a与直线b平行,∠3与∠7是同位角,所以∠3=∠7.又因为∠7与∠6是对顶角,相等,因此可知∠3与∠6相等.
∠4与∠5也可以这样得出.
[师]乙同学叙述得很好,学以致用,他找到了内错角与同位角的关系,从而得到:内错角相等.即a∥b→∠3=∠6.推证如下:
接下来,我们来解决第(2)问.
[生丙]图中有2对同旁内角,分别是:
∠3与∠5;∠4与∠6.
它们的关系为互补,即:
∠3+∠5=180°,∠4+∠6=180°.
因为:直线a与直线b平行,∠2与∠6是同位角,所以∠2=∠6.
又因为:∠2+∠4=180°,
所以可得:∠4+∠6=180°.
同理也可推证:∠3+∠5=180°.
[生丁]老师,也可以这样说理由吧:
因为:直线a与直线b平行,∠3与∠6是内错角,所以∠3=∠6,
又因为:∠3+∠4=180°.所以可得:∠6+∠4=180°.因此可知:两条直线平行,同旁内角互补.
[师]同学们讨论.表达得很好.通过找到同旁内角与同位角或内错角的关系,得到了:两直线平行,同旁内角互补.即:
a∥b→∠4+∠6=180°.
推理如下:
或:
好,大家现在换另一组平行线试试,能得到相同的结论吗?
[生齐声]能.
[师]很好.同学们来看大屏幕(动画演示两直线平行,内错角相等或同旁内角互补).
由此我们得到了平行线的特征.(出示投影片§2.3 C)
两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.
简记为:
两直线平行,同位角相等.
两直线平行,内错角相等.
两直线平行,同旁内角互补.
如图2-39,
图2-39
a∥b→
大家再想一想:你还能探索出平行线的哪些特征
[生甲]在直线a与直线b平行的情况下,如果直线c与直线a垂直,那么直线c必定与直线b垂直.
如图2-39,a∥b→∠1=∠5,当a⊥c时,即∠1=90°,则∠5也等于90°,因此,b⊥c.
[师]很好.接下来我们做一做
如图2-40,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.
(1)∠1、∠3的大小有什么关系?∠2与∠4呢?
(2)反射光线BC与EF也平行吗?
图2-40
[师]大家要仔细观察,∠1与∠3是什么样的角,∠2与∠4呢?用自己的语言叙述.
[生乙]从图中可以看出:∠1与∠3是同位角,因为AB与DE是平行的,所以∠1=
∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.
[生丙]因为∠2与∠4是同位角,所以BC∥EF.
[师]很好.同学们来看小华的思考(出示投影片§2.3 E)
我是这样想的.
(1)AB∥DE→∠1=∠3→∠2=∠4
(2)∠2=∠4→BC∥EF.
你能说明每一步的理由吗?与同伴交流一下.
[生丁](1)的第一步的理由:两直线平行,同位角相等.第二步的理由:等量代换.即由:∠1=∠3,∠1=∠2,∠3=∠4,得出∠2=∠4的.
[生戊](2)的理由:同位角相等,两直线平行.
[师]这个题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.
下面我们来做练习以巩固平行线的特征.
Ⅲ.课堂练习
(一)课本P60随堂练习
1.如图2-41所示,AB∥CD,AC∥BD,分别找出与∠1相等或互补的角.
图2-41
解:如图2-42,与∠1相等的角有:∠3,∠5,∠7,∠9,∠11,∠13,∠15.
图2-42
与∠1互补的角有:∠2,∠4,∠6,∠8,∠10,∠12,∠14,∠16.
(二)读一读:“测量地球的周长”
Ⅳ.课时小结
本节课我们主要学行线的特征及其应用,还了解了直线平行的条件与平行线的特征的区别.
平行线的特征:
两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.
这些特征要掌握,还有一些特征同学们只需了解即可.如:两条平行线中的一条直线与第三条直线垂直,那么另一条直线也与第三条直线垂直.
Ⅴ.课后作业
(一)课本P62习题2.4 1、2、3.
(二)1.预习内容:P63~64
2.预习提纲
(1)如何利用直尺和圆规作一条线段等于已知线段.
(2)了解用尺规作图的语言.
●板书设计
§2.3 平行线的特征
一、平行线的特征
两直线平行→
如图:
a∥b→
二、做一做
三、课堂练习
四、课时小结
五、课后作业
第五课时
●课 题
§2.4.1 用尺规作线段和角
●教学目标
(一)教学知识点
1.会用尺规作一条线段等于已知线段.
2.利用尺规作一条线段等于已知线段的应用.
(二)能力训练要求
会用尺规作一条线段等于已知线段;并了解它在尺规作图中的简单应用.
(三)情感与价值观要求
通过教师的讲解、学生的动手实践,培养学生的动手能力及与同学交流的习惯.
●教学重点
会用尺规作一条线段等于已知线段.
●教学难点
学生理解作图步骤中的语言,并会根据画图语言画出图形.
●教学方法
讲练相结合法
●教具准备
师:圆规、直尺.
片§2.4.1 C)
学生:圆规、直尺
●教学过程
Ⅰ.创设现实情景,引入新课
[师]在现实生活中,我们经常见到一些美丽的图案,如下列图案(出示投影片§2.4.1 A)
图案(1)、(2)、(3)是我们曾经画过的.想一想,这些图案是利用哪些作图工具画出的?
[生]是利用直尺、圆规和三角尺等这些工具画出的.
[师]很好,直尺、圆规和三角尺是常用的作图工具,利用这些工具可以作出很多的几何图形.在以后的作图中,我们运用最多的作图工具是没有刻度的直尺和圆规.
我们把只用没有刻度的直尺和圆规的作图称为尺规作图.
在上册中,我们曾介绍了用直尺和圆规作一条线段等于已知线段.大家回忆一下作图的过程和方法.
[生]先画一条射线AB,用圆规量出已知线段的长度(记作a),再在射线AB上以A为圆心,截取AC=a,这样所求的线段就是AC.
如下图2-51:
图2-51
[师]很好,这只是我们初步的用直尺和圆规来作图的方法.今天我们来继续深入地学习用尺规作一条线段等于已知线段.
Ⅱ.讲授新课
[师]用尺规作图具有以下四个步骤:
(1)已知,即:已知的条件是什么.
(2)求作,即:所要作的最终的结果是什么,满足什么条件.
(3)分析,即:分析如何作出所要求作的图形,一般不用写出来.
(4)作法,这是作图的主要步骤,在这里要写清作图的过程.
在今后的作图中,要注意作图步骤的书写.就现在来说,只要求大家了解尺规作图的步骤.下面我们共同用尺规作一条线段等于已知线段(教师一边叙述,一边书写、画;学生只画图).
已知,线段AB.
图2-52
求作:线段A′B′,使A′B′=AB.
作法:(1)作射线A′C′.
(2)以点A′为圆心,以AB的长为半径画弧,交射线A′C′于点B′.
A′B′就是所求的线段.
图2-53
[师]同学们画得很好,但要注意圆规的用法.接下来大家口述表达一下作法.(教师出示投影片§2.4.1 B)
作法 示范
(1)作射线A′C′
(2)以点A′为圆心,以AB的长为半径画弧,交射线A′C′于点B′.A′B′就是所作的线段.
[师]好,下面我们来做一做,以熟悉用尺规作一条线段等于已知线段.(出示投影片§2.4.1 C)
如图2-54,已知线段a和两条互相垂直的直线AB、CD.
图2-54
(1)利用圆规,在射线OA、OB、OC、OD上作线段OA′、OB′、OC′、OD′,使它们分别与线段a相等.
(2)依次连接A′、C′、B′、D′、A′.
你得到了一个怎样的图形?与同伴进行交流.
[生甲]以O为圆心,以a的长为半径画弧,分别交OA、OB、OC、OD于A′、B′、C′、D′,则OA′、OB′、OC′、OD′就是所求作的线段.如图2-55.
图2-55
[生乙]依次连接A′、C′、B′、D′、A′,这样得到的图形是正方形.
[师]很好,大家要会口头表述作法,在图形上要保留作图痕迹.
接下来,我们做练习以巩固所学内容.
Ⅲ.课堂练习
(一)课本P64随堂练习
1.如图2-56,已知线段a和b,直线AB与CD垂直且相交于点O.
图2-56
利用尺规,按下列要求作图:
(1)在射线OA、OB、OC上作线段OA′、OB′、OC′,使它们分别与线段a相等.
(2)在射线OD上作线段OD′,使OD′等于b.
(3)依次连接A′、C′、B′、D′、A′.
你得到了一个怎样的图形?与同伴进行交流.
解:(1)以O为圆心,以a的长为半径画弧,交射线OA、OB、OC于点A′、B′、C′.
则OA′、OB′、OC′就是所求作的线段.(如图2-57)
(2)以O为圆心,以b的长为半径画弧,交射线OD于点D′.则OD′就是所求作的线段.(如图2-57)
图2-57
(3)依次连接A′、C′、B′、D′、A′,这样得到的图形为筝形(如图2-57).
●板书设计
§2.4.1 用尺规作线段和角
一、尺规作图
已知
求作
作法
二、用尺规作一条线段等于已知线段.
已知:线段AB
求作:线段A′B′使A′B′=AB
作法:1.作射线A′C′.
2.以点A′为圆心,以AB的长为半径画弧,交射线A′C′于点B′.
A′B′就是所求作的线段.
三、做一做
四、课堂练习
五、课时小结
六、课后作业
第六课时
●课 题
§2.4.2 用尺规作线段和角
●教学目标
(一)教学知识点
1.会用尺规作一个角等于已知角.
2.利用尺规作一个角等于已知角的应用.
(二)能力训练要求
会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用.
(三)情感与价值观要求
通过作图,进一步激发学生的学习兴趣,体验数学在生活中的应用.
●教学重点
用尺规作一个角等于已知角.
●教学难点
理解画图的语言,能根据几何语言画出图形.
●教学方法
讲练结合法
●教具准备
师:直尺、圆规.
)
生:直尺、圆规、量角器
●教学过程
Ⅰ.创设现实情景,引入新课
[师]在上节课我们学习了用直尺和圆规作图,并且引入了规范的尺规作图语言.从而能够用几何语言描述作一条线段等于已知线段.那么如何用尺规作一条线段等于已知线段呢?
[生]已知线段a,求作:线段AB,使AB=a.
作法:(1)作射线AC.
(2)以点A为圆心,以a的长为半径画弧,交AC于点B.则,AB就是所求的线段.
图2-64
[师]很好.同学们已掌握了一些尺规作图的语言.下面大家看一实例,你能解决它吗?(出示投影片§2.4.2 A)
如图2-65,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.
(1)请过C点画出与AB平行的另一条边.
(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?
图2-65
[师]大家讨论讨论.
[生甲]要在长方形木板上截一个平行四边形,按上图的方式(平行四边形的一组对边在长方形木板的边缘上).只要保证过点C作出与AB平行的另一条线段即可.所以我用一个三角板的一边与AB重合,用直尺紧靠三角板的另一边,然后移动三角板,使与AB重合的那边过点C,这样过C点画线段CD,则CD就是所求的与AB平行的另一边.如图2-66.
图2-66
[生乙]只有一个圆规和一把没有刻度的直尺,现在还不能解决这个问题.
[生丙]过直线外一点作这条直线的平行线的原理是:同位角相等,两直线平行.所以,能不能过点C作一个角等于∠BAC,且使这两个角是同位角呢?
[师]同学们讨论得很好,尤其是丙同学提出的问题:作一个角等于已知角.这节课,我们就来利用尺规作一个角等于已知角.
Ⅱ.讲授新课
[师]用尺规作图,它的步骤有哪些呢?
[生]已知、求作、分析、作法.
[师]好,那我们现在先来写已知、求作.
[师生共析]已知:∠AOB,求作:∠A′O′B′,使∠A′O′B′=∠AOB.
图2-67
[师]这个∠A′O′B′如何就能作出呢?它的道理是什么呢?这将在第五章中谈到.现在我们只需按下列作法步骤去画即可.
下面老师在黑板上画、叙述,同学们在下面用尺规作∠A′O′B′,使∠A′O′B′=∠AOB.
作法:(1)作射线O′A′.
(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.
(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.
(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.
(5)过点D′作射线O′B′.
∠A′O′B′就是所求作的角.
图2-68
[师]同学们作好了没有?
[生齐声]好了.
[师]那你所作的角一定等于已知角吗?
……
[师]大家来比较一下.
[生甲]我用量角器量了量所作的角与已知角,可以知道这两个角相等.
[生乙]我把所作的角与已知角重叠,看到这两个角的终边与始边重合,说明所作的角与已知角相等.
[师]很好.这样我们就会用尺规作一个角等于已知角.
下面我们两人一组,再作一个角等于已知角,一人叙述作法,一人根据作图.
……
[师]大家基本掌握了用尺规作一个角等于已知角.接下来我们通过练习进一步熟悉掌握这内容.
Ⅲ.课堂练习
(一)课本P67随堂练习
1.已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.
图2-69 图2-70
作法:(1)以O为圆心,以任意长为半径画弧,与OA交于点A′,与OB交于点C.
(2)以点C为圆心,以A′C长为半径画弧,交前弧于点B′.
(3)过点B′作射线OB′,则∠A′OB′就是所求作的角.
或者:作法:(1)作射线O′A′.
(2)以O点为圆心,以任意长为半径画弧交OA于点C,交OB于点D.
图2-71 图2-72
(3)以点O′为圆心,以OC长为半径画弧,交O′A′于C′点.
(4)以点C′为圆心,以CD长为半径画弧,交前弧于E点.
(5)以点E为圆心,以CD长为半径画弧,交 于点B′.
(6)过点B′作射线OB′.
则∠A′O′B′就是所求作的角.
2.利用尺规完成本节课开始时提出的问题.
作法:(略),图如下
图2-73
(二)看书P67“读一读”.
(三)看课本P65~66.
Ⅳ.课时小结
本节课我们主要学习了用尺规作一个角等于已知角.要会用自己的语言来书写作法,并要了解作一个角等于已知角在尺规作图中的简单应用.
Ⅴ.课后作业
(一)课本P68习题2.6 1.
(二)复习本章的全部内容,并作一小结.
●板书设计
§2.4.2 用尺规作线段和角
一、做一做:
作一个角等于已知角
已知
求作
作法
二、课堂练习
三、读一读
四、课时小结
五、课后作业
C′E
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网