课件16张PPT。13.1幂的运算回忆: 同底数幂的乘法法则:am·an=am+n
其中m , n都是正整数语言叙述: 同底数幂相乘,底数不变,指数相加回忆: 幂的乘方法则:(am)n=amn
其中m , n都是正整数语言叙述: 幂的乘方,底数不变,指数相乘底数不变指数相乘指数相加其中m , n都是正整数(am)n=amnam·an=am+n 练习一 1.???计算:( 口答)1011 a10 x10 x 9 (3) a7 ·a3(5) x5 ·x5 (7) x5 ·x ·x3 (1) 105×106(2) (105)6(4) (a7)3 (6) (x5)5 (8)(y3)2· (y2)31030 a21 x25 y 12= y 6 · y 6 =①10m·10m-1·100=②3×27×9×3m= 练习一 2.???计算:③(m-n)4·(m-n) 5·(n-m)6
=④ (x-2y)4·(2y-x) 5·(x-2y)6
=1.下列各式中,与x5m+1相等的是( )
(A)(x5)m+1 (B)(xm+1)5
(C) x(x5)m (D) xx5xmc 练习二2.x14不可以写成( )
(A)x5(x3)3 (B) (-x)(-x2)(-x3)(-x8)
(C)(x7)7 (D)x3x4x5x2c3.计算(-32)5-(-35)2的结果是( )
(A)0 (B) -2×310
(C)2×310 (D) -2×37B思考题:1、若 am = 2, 则a3m =_____.
2、若 mx = 2, my = 3 ,
则 mx+y =____, m3x+2y =______.8672动脑筋!(1)(ab)2 = (ab) ? (ab) = (aa) ? (bb) = a ( )b( )
(2)(ab)3=__________________________
=__________________________
= a ( )b( )
(3)(ab)4=__________________________
=__________________________
= a ( )b( )(ab) ? (ab) ? (ab) (aaa) ? (bbb)22(ab) ? (ab) ? (ab) ? (ab) (aaaa) ? (bbbb)3344积的乘方 试猜想:(ab)n=?
其中 n是正整数积的乘方 (ab)n=
=
= a nbn
? ∴(ab)n = a nbn (n为正整数)证明:语言叙述:积的乘方,等于各因数乘方的积。例3 计算:解(1)(2b)3(2)(2×a3)2(3)(-a)3(4)(-3x)4 =23b3
=8b3 =22×(a3)2
=4a6 =(-1)3 ?a3
= -a3 =(-3)4 ? x4
= 81 x41.判断下列计算是否正确,并说明理由:
(1)(xy3)2=xy6
(2)(-2x)3=-2x32.计算:
(1)(3a)2
(2)(-3a)3
(3)(ab2)2
(4)(-2×103)3x3y6-8x3=(-3)3a3=-27a3=a2(b2)2=a2b4=(-2)3×(103)3=-8×109=32a2=9a2逆 用 法 则 进 行 计 算 (1)24×44×0.1254
=
= (2)(-4)2005×(0.25)2005
=
=(2×4×0.125)4 1(-4×0.25)2005-1(3)-82000×(-0.125)2001
=
=
=
=-82000×(-0.125)2000× (-0.125)-82000×0.1252000× (-0.125)-(8×0.125)2000× (-0.125)-1× (-0.125) = 0.125课堂测验①(5ab)2
②(-xy2)3
③(-2xy3)4
④(-2×10) 3
⑤(-3x3)2-[(2x)2]3⑥(-3a3b2c)4
⑦(-anbn+1)3
⑧0.52005×22005
⑨ (-0.25)3×26
⑩ (-0.125) 8×230计 算 :