课件11张PPT。用列举法求概率1.用列举法求概率的条件是:
(1)实验的结果是有限个(n)
(2)各种结果的可能性相等.复习:2.用列举法求概率的的公式是: 1.口袋中一红三黑共4个小球,一次从中取出两个小球,求 “取出的小球都是黑球”的概率解:一次从口袋中取出两个小球时, 所有可能出现的结果共6个,即:(红,黑1)(红,黑2)(红,黑3)
(黑1,黑2)(黑1,黑3)(黑2,黑3)
且它们出现的可能性相等。
满足取出的小球都是黑球(记为事件A)的结果有3个,
即(黑1,黑2)(黑1,黑3)(黑2,黑3) , 则
P(A)= =直接列举2.同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9
(3)至少有一个骰子的点数为2解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。
(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)= =
(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)= =
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)= 如果把上一个例题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所有可能出现的结果有变化吗? 当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。 什么时候用“列表法”方便? 改动后所有可能出现的结果没有变化 例1:在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少? 例1:在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少? 解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.
满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则
P(A)= = 甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I。 从3个口袋中各随机地取出1个小球。
(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少? 甲乙丙ACDEHIHIHIBCDEHIHIHI练习解:由树形图得,所有可能出现的结果有12个,它们出现的可能性相等。
(1)满足只有一个元音字母的结果有5个,
则 P(一个元音)=
满足只有两个元音字母的结果有4个,
则 P(两个元音)= =
满足三个全部为元音字母的结果有1个,
则 P(三个元音)=
(2)满足全是辅音字母的结果有2个,
则 P(三个辅音)= = 想一想,什么时候用“列表法”方便,什么时候用“树形图”方便? 当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法 当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图