变量与函数的概念

文档属性

名称 变量与函数的概念
格式 rar
文件大小 21.3KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2010-10-22 18:51:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
教案纸
课 题 变量与函数的概念 课型 新课
主备人 赵辉 上课教师 赵辉 上课时间 45 分钟
学习目标 (1)了解构成函数的要素;(2)会求一些简单函数的定义域和值域;(3)能够正确使用“区间”的符号表示某些函数的定义域
教学重点 理解函数的模型化思想,用集合与对应的语言来刻画函数;
教学难点 符号“y=f(x)”的含义,函数定义域和值域的区间表示
教师准备 多媒体
教学过程 集备修正
引入课题复习初中所学函数的概念,强调函数的模型化思想;阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:日 期222324252627282930新增确诊病例数1061058910311312698152101引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.构成函数的三要素:定义域、对应关系和值域3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论 (由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域 例1:已知函数f (x) = +(1)求函数的定义域;(2)求f(-3),f ()的值;(3)当a>0时,求f(a),f(a-1)的值. 说明:函数的定义域通常由问题的实际背景确定,如果课前三个实例;如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数(1)f ( x ) = (x -1) 0;g ( x ) = 1(2)f ( x ) = x; g ( x ) = (3)f ( x ) = x 2;f ( x ) = (x + 1) 2(4)f ( x ) = | x | ;g ( x ) = 说明:构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:课本P22第2题判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f ( x ) = (x -1) 0;g ( x ) = 1(2)f ( x ) = x; g ( x ) = (3)f ( x ) = x 2;f ( x ) = (x + 1) 2(4)f ( x ) = | x | ;g ( x ) = 说明:构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:课本P22第2题判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?(1)f ( x ) = (x -1) 0;g ( x ) = 1(2)f ( x ) = x; g ( x ) = (3)f ( x ) = x 2;f ( x ) = (x + 1) 2(4)f ( x ) = | x | ;g ( x ) = (三)课堂练习求下列函数的定义域(1)(2)(3)(4)(5)(6)引导学生小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义.归纳小结,强化思想从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。作业布置课本P28 习题1.2(A组) 第1—7题 (B组)第1题板书
引入问题 例题分析 课堂小结导入新课 例一 课后作业讲授新课 例二
课后反思 本节课和上一节课的知识有着密切的联系,但是由于学生的初中的知识点掌握的不好所以讲起课来非常的吃力不是每一个学生都能够真正的理解变量的概念 这就需要因材施教 在课后给不会的同学多补补
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网