第二章 圆锥曲线 同步练习(二)
一、选择题
1.如果表示焦点在轴上的椭圆,那么实数的取值范围是( )
A. B. C. D.
2.以椭圆的顶点为顶点,离心率为的双曲线方程( )
A. B.
C.或 D.以上都不对21世纪教育网
3.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,
则双曲线的离心率等于( )
A. B. C. D.
4. 是椭圆的两个焦点,为椭圆上一点,且∠,则
Δ的面积为( )
A. B. C. D.
5.以坐标轴为对称轴,以原点为顶点且过圆的圆心的抛物线的方程是( )
A.或 B.
C.或 D.或
6.设为过抛物线的焦点的弦,则的最小值为( )
A. B. C. D.无法确定
二、填空题
1.椭圆的离心率为,则的值为______________。
2.双曲线的一个焦点为,则的值为______________。
3.若直线与抛物线交于、两点,则线段的中点坐标是______。
4.对于抛物线上任意一点,点都满足,则的取值范围是____。
5.若双曲线的渐近线方程为,则双曲线的焦点坐标是_________.
6.设是椭圆的不垂直于对称轴的弦,为的中点,为坐标原点,
则____________。
三、解答题
1.已知定点,是椭圆的右焦点,在椭圆上求一点,
使取得最小值。
2.代表实数,讨论方程所表示的曲线
21世纪教育网
3.双曲线与椭圆有相同焦点,且经过点,求其方程。
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,
求抛物线的方程。
参考答案
一、选择题
1.D 焦点在轴上,则
2.C 当顶点为时,;
当顶点为时,
3.C Δ是等腰直角三角形,
4.C
[来源:21世纪教育网]
21世纪教育网
5.D 圆心为,设;
设
6.C 垂直于对称轴的通径时最短,即当
二、填空题
1. 当时,;
当时,
2. 焦点在轴上,则
3.
中点坐标为
4. 设,由得
恒成立,则
5. 渐近线方程为,得,且焦点在轴上[来源:21世纪教育网]
6. 设,则中点,得
,,
得即
三、解答题
1.解:显然椭圆的,记点到右准线的距离为
则,即
当同时在垂直于右准线的一条直线上时,取得最小值,
此时,代入到得
而点在第一象限,
2.解:当时,曲线为焦点在轴的双曲线;
当时,曲线为两条平行的垂直于轴的直线;
当时,曲线为焦点在轴的椭圆;
当时,曲线为一个圆;
当时,曲线为焦点在轴的椭圆。
3.解:椭圆的焦点为,设双曲线方程为
过点,则,得,而,
,双曲线方程为。
4.解:设抛物线的方程为,则消去得
,
则