(苏教版选修2—2)数学:3.2.2《复数的四则运算》教案

文档属性

名称 (苏教版选修2—2)数学:3.2.2《复数的四则运算》教案
格式 rar
文件大小 38.8KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2010-10-22 12:19:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
数学教案
主备人 授课人21世纪教育网 授课日期21世纪教育网
课题 §3.2.2复数的四则运算 课型 新授
教学目的:知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。教学重点:复数代数形式的除法运算。教学难点:对复数除法法则的运用。
教学过程 备课札记
1、实数集R中正整数指数的运算律,在复数集C中仍然成立.即对z1,z2,z3∈C及m,n∈N*有:21世纪教育网 zmzn=zm+n, (zm)n=zmn,(z1z2)n=z1nz2n.例2:设,求证:(1)2. 复数除法定义:满足(c+di)( x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商,记为:(a+bi)(c+di)或者3.除法运算规则:①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),即(a+bi)÷(c+di)=x+yi∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.∴(cx-dy)+(dx+cy)i=a+bi.由复数相等定义可知解这个方程组,得于是有:(a+bi)÷(c+di)= i.②利用(c+di)(c-di)=c2+d2.于是将的分母有理化得:原式=.∴(a+bi)÷(c+di)=.点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数c+di与复数c-di,相当于我们初中学习的的对偶式,它们之积为1是有理数,而(c+di)·(c-di)=c2+d2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法例3计算解:例4 计算例3已知z是虚数,且z+是实数,求证:是纯虚数.证明:设z=a+bi(a、b∈R且b≠0),于是z+=a+bi+=a+bi+.∵z+∈R,∴b-=0.∵b≠0,∴a2+b2=1.∴∵b≠0,a、b∈R,∴是纯虚数21世纪教育网
w.w.w.k.s.5.u.c.o.m
www.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网