本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.2有理数
学习目标:
1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力.
2、了解分类的标准与集合的含义.
3、体验分类是数学上常用的处理问题方法.
学习重点:正确理解有理数的概念
学习难点:正确理解分类的标准和按照一定标准分类
教学方法:引导、探究、归纳与练习相结合
教学过程
一、探究新知
1、通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗 .(3名学生板书)
问题1:观察黑板上的9个数,我们将这三位同学所写的数做一下分类..
该分为几类,又该怎样分呢?先分组讨论交流,再写出来
分为 类,分别是:
引导归纳:
统称为整数, 统称为有理数.
问题2:我们是否可以把上述数分为两类 如果可以,应分为哪两类
师生共同交流、归纳
2、正数集合与负数集合
所有的正数组成 集合,所有的负数组成 集合
二、知识应用
1、P8练习(做在课本上)
2.把下列各数填入它所属于的集合的圈内:
15, -, -5, , , 0.1, -5.32, -80, 123, 2.333.
21世纪教育网
正整数集合 负整数集合
正分数集合 负分数集合
[来源:21世纪教育网]
3页21世纪教育网
三、引导归纳
有理数分类
或者
四、小结
1、学生小结(体会)
收获是
遇到的困难是 [来源:21世纪教育网]
2、教师小结(略)
五、自我测试
1、下列说法中不正确的是……………………………………………( )
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
c.-2000既是负数,也是整数,但不是有理数
D.O是正数和负数的分界
2、在下表适当的空格里画上“√”号
有理数 整数 分数 正整数 负分数 自然数
-9是
-2.35是[来源:21世纪教育网]
O是
+5是
3、P14第一题(可以做在课本上)
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.1正数和负数(1)
学习目标:
1、整理前两个学段学过的整数、分数(包括小数)知识,掌握正数和负数概念.21世纪教育网
2、会区分两种不同意义的量,会用符号表示正数和负数.
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.
学习重点:两种意义相反的量
学习难点:正确会区分两种不同意义的量
教学方法:引导、探究、归纳与练习相结合
教学过程
一、学前准备
1、小学里学过哪些数请写出来: 、 、 .
2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答上面提出的问题: .
二、探究新知
1、正数与负数的产生
1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.
请你也举一个具有相反意义量的例子: .
2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
3)练习 P3第一题到第四题(直接做在课本上)
三、练习
1、读出下列各数,指出其中哪些是正数,哪些是负数?
—2, 0.6, +, 0, —3.1415, 200, —754200,
2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示
1页
[来源:21世纪教育网]
四、应用迁移,巩固提高(A组为必做题)
A组 1.任意写出5个正数:________________;任意写出5个负数:_______________.
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数:,,3.14,+3065,0,-239.
则正数有_____________________;负数有____________________.
4.如果向东为正,那么 -50m表示的意义是………………………( )
A.向东行进50m C.向北行进50m
B.向南行进50m D.向西行进50m
5.下列结论中正确的是 …………………………………………( )
A.0既是正数,又是负数 B.O是最小的正数
C.0是最大的负数 D.0既不是正数,也不是负数
6.给出下列各数:-3,0,+5,,+3.1,,2004,+2008.
其中是负数的有 ……………………………………………………( )
A.2个 B.3个 C.4个 D.5个
B组
1.零下15℃,表示为_________,比O℃低4℃的温度是_________.
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________.
C组
1.写出比O小4的数,比4小2的数,比-4小2的数.
21世纪教育网
2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.
1.1正数和负数(2)
学习目标:
1、会用正、负数表示具有相反意义的量.
2、通过正、负数学习,培养学生应用数学知识的意识.
3、通过探究,渗透对立统一的辨证思想
学习重点:用正、负数表示具有相反意义的量
学习难点:实际问题中的数量关系
教学方法:讲练相结合
教学过程
一、.学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解 解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家2001年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
21世纪教育网
(2)六个国家2001年商品进出口总额的增长率:
美国-6.4%, 德国1.3%,
法国-2.4%, 英国-3.5%,
意大利0.2%, 中国7.5%.
三、巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四、阅读思考 1页
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格 [来源:21世纪教育网]
2.你知道还有那些事件可以用正负数表示允许误差吗 请举例.
五、小结
1、本节课你有那些收获?
2、还有没解决的问题吗?
六、应用与拓展
1、必做题:
教科书5页习题4、5、:6、7、8题
2、选做题
1).甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是 .
2.)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少 最小不小于标准尺寸多少
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.5有理数的乘方(1)
学习目标:
1、理解有理数乘方的意义.
2、掌握有理数乘方运算
3、经历探索有理数乘方的运算,获得解决问题经验.
学习重点:有理数乘方的意义
学习难点:幂、底数、指数的概念极其表示
教学方法:观察、归纳、练习
教学过程
一、学前准备
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包 .
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合 次后,就可以拉出32根面条.21世纪教育网
二、合作探究
1、分小组合作学习P41页内容,然后再完成好下面的问题
1) 叫乘方, 叫做幂,在式子an中,a叫做 ,n叫做 .
2)式子an表示的意义是
3)从运算上看式子an,可以读作 ,从结果上看式子an,可以读作 .
三、新知应用
1、将下列各式写成乘方(即幂)的形式:
1)(—2.3)×(—2.3)×(—2.3)×(—2.3)×(—2.3)= .
2)、(—)×(—)×(—)×(—)= .
3) …… (2008个)=
2、例题,P41例1师生共同完成
从例题1 可以知道:正数的任何次幂都是 数,负数的奇次幂是 数,负数的偶次幂是 数,0的任何次幂都是 .
3、思考:(—2)4和—24意义一样吗?为什么? 1页
四、新知应用
完成P42页第一题
五、小结
1、请你对本节课所学知识作个小结
2、我们已经学习了五种运算,请把下表补充完整:
运算[来源:21世纪教育网] 加 减 乘 除 乘方
运算结果21世纪教育网 和 21世纪教育网
六、自我检测
1、填空
1)底数是-1,指数是91的幂写做_________,结果是_________.
2)(-3)3的意义是_________,-33的意义是___________.
3)5个 相乘写成__________, 的5次幂写成_________.
2、用乘方的意义计算下列各式:
(1) ; (2)
(3); (4)
3、观察下列各等式:
1=; 1+3= ; 1+3+5=;
1+3+5+7=……
1 通过上述观察,你能猜想出反映这种规律的一般结论吗?
你能运用上述规律求1+3+5+7+…+2003的值吗?
七、作业
1、P47第一题
2、根据自己的情况选做
2.计算
(1) ; (2)
1.5有理数的乘方(2)
学习目标:
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、会进行有理数的混合运算;
3、培养并提高正确迅速的运算能力.
学习重点:运算顺序的确定和性质符号的处理
学习难点:有理数的混合运算
教学方法:合作交流、讨论、练习
教学过程
一、学前准备
1、在2+×(-6)这个式子中,存在着 种运算.
2、请你们以4人一个小组讨论、交流,上面这个式子应该先算 、再算
、最后算 .
二、交流反馈
1、由上可以知道,在有理数的混合运算中,运算顺序是:
1)、先算乘方,再算乘除,最后算加减;
2)、同级运算,从左到右进行;
3)、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
三、巩固练习
1、P43例题3,请你试练
2、师生共同探讨P43例题4
3、练习
计算
四、回顾、思考21世纪教育网
1、以后遇到有理数的混合运算,应该按怎样的顺序计算?
2、对于你来说,学习中遇到的问题是什么?
五、自我检测
计算: 1、(—1)10×2+(—2)3÷4
3页
2、(—5)3—3× 3、
4、(—10)4+[(—4)2—(3+32)×2]
5、
六、作业
P47第三题
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第1章 有理数复习教案
一. 学习目标
1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。
2. 掌握有理数的加、减、乘、除、乘方的运算法则,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算;
3.养成“言必有据、做必有理、答必正确”的良好思维习惯。增进“应用数学知识解决实际问题的数学思想。
二. 知识重点:
绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
三. 知识难点:
绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
四.考点:
绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
五. 教学过程
一. 知识梳理:
(一)、有理数的基础知识
1、三个重要的定义:
(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。
2、有理数的分类:
(1)按定义分类: (2)按性质符号分类:
3、数轴
数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。[来源:21世纪教育网]
4、相反数
如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。
5、绝对值
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。[21世纪教育网]
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:
(3)两个负数比较大小,绝对值大的反而小。
(二)、有理数的运算
1、有理数的加法
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。
(2)有理数加法的运算律:
加法的交换律 :a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c)
用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
2、有理数的减法
(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;
3、有理数的乘法21世纪教育网
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac。
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。
4、有理数的除法
有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。
5、有理数的乘法
(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂。
(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数
6、有理数的混合运算
(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序。比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算。
(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力。
二、典型例题
例题1:将下列数分别填入相应的集合中:
正数集合:{ } 整数集合:{ }
分数集合:{ } 负数集合:{ }
例题2:选择
(1).已知x是绝对值最小的有理数,y是最大的负整数,则代数式x3+3x3y+3xy2+y3的
值是( ) A.0 B.1? C.-3 D.-1
(2).已知三个数在数轴上对应点的位置如图所示,下列几个判断:
①;②; ③; ④中,错误的个数是( )个
A.1 B.2 C.3 D.4
(3).如果知道a与b互为相反数,且x与y互为倒数,那么代数式|a + b|-2xy的值为 ( )
A.0 B.-2 C.-1 D.无法确定
例题3: 计算
(1) (2)
(3) (4) -1+(-)×(-2)
例4. 邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到达C村,最后回到邮局。
(1)以邮局为原点,以向北方向为正方向,用1cm表示1km画出数轴,并在该数轴上表示出A、B、C三个村庄的位置。(2’)
(2)C村离A村有多远?(2’) (3)邮递员一共骑行了多少千米?(2’)
三.课堂练习
1.计算所得的结果是( )
A、0 B、32 C、 D、1621世纪教育网
2. 有理数中倒数等于它本身的数一定是( )
A、1 B、0 C、-1 D、±1
3. 若,则=( )
A、– 1 B、1 C、0 D、3
4. 有理数a,b如图所示位置,则正确的是( )
A、a+b>0 B、ab>0 C、b-a<0 D、|a|>|b|
5. (– 5)+(– 6)=___;(– 5)–(– 6)=___;(– 5)×(– 6)=___;(– 5)÷6=___。21世纪教育网
6. ____;=____;____;____ _。
7. _________;
8 . 计算(1) (2)
四.课堂小结
五. 课堂作业
把下列各数填在相应的大括号内:
-,+,0.275,2,0,-1.04,,-8,-100,-,+
负整数集合:{ …};正分数集合:{ …};负分数集合:{ …}
8、(-+)×(-36)
9、-22×7-(-3)×6+5 10、-14-〔1-(1-0.5×)〕×6
3.某检修小组1乘一辆汽车沿公路检修线路,约定向东为正。某天从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。
另一小组2也从A地出发,在南北向修,约定向北为正,行走记录为:
-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8。
(1)分别计算收工时,1,2两组在A地的哪一边,距 A地多远?
(2)若每千米汽车耗油a升,求出发到收工各耗油多少升?
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.4有理数的乘法
学习目标:
1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算
2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力.
3、培养语言表达能力.调动学习积极性,培养学习数学的兴趣.
学习重点:有理数乘法
学习难点:法则推导
教学方法:引导、探究、归纳与练习相结合
教学过程
一、学前准备
一只蜗牛沿直线L爬行,
它现在的位置恰好在点O上. 21世纪教育网
我们规定:向左为负,向右为正,现在前为负,现在后为正
看看它以相同速度沿不同方向运动后的情况吧
二、探究新知
1、接上问题 (1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置
可以表示为 .
(2) 如果它以每分2cm的速度向左爬行,3分钟后它在什么位置
可以表示为
(3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置
可以表示为
(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置
可以表示为
由上可知: (1) 2×3 = ; (2)(-2)×3 = ;
(3)(+2)×(-3)= ; (4)(-2)×(-3)= ;
(5)两个数相乘,一个数是0时,结果为0
3页
观察上面的式子, 你有什么发现?能说出有理数乘法法则吗?
两数相乘,同号 ,异号 ,并把 相乘.
任何数与0相乘,都得 .
三、新知应用
1、直接说出下列两数相乘所得积的符号
1)5×(—3) 2)(—4)×6
3)(—7)×(—9) 4)0.9×8
2、例1 计算:(1)(-3)×(-9); (2)(-)×.
请同学们自己完成
3、阅读P30例2
4、练习 (1)、计算
1)6×(—9)= . 2)(—4)×6= .
3)(—6)×(—1)= 4)(—6)×0= .
5) 6) .
7)(—1)×(—2)×3 8)(—4)×(—0.5)×(—3)
= =
= =
(2)商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?
(3)写出下列各数的倒数
1, —1, 5, —5, ,
1.4有理数的乘法(2)
学习目标:
1、经历探索多个有理数相乘的符号确定法则.
2、会进行有理数的乘法运算.
3、通过对问题的探索,培养观察、分析和概括的能力.[来源:21世纪教育网]
学习重点:多个有理数乘法运算符号的确定
学习难点:正确进行多个有理数的乘法运算
教学方法:观察、分析、归纳与练习相结合
教学过程
一、学前准备21世纪教育网
请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?
结果怎么样,你能明白其中的数学道理吗?
二、探究新知
1、 观察:下列各式的积是正的还是负的?
2×3×4×(-5),
2×3×(-4)×(-5),
2×(×3)× (×4)×(-5),
(-2) ×(-3) ×(-4) ×(-5).
思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
分组讨论交流,再用自己的语言表达所发现的规律:
几个不是0的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数.
2、利用所得到的规律,看看翻牌游戏中的数学道理。
三、新知应用
1、例题3,(P40页)例3,
请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由
7.8×(-8.1)×O× (-19.6)
师生小结
2、练习 计算
1)、—5×8×(—7)×(—0.25) 2)、
3)
1页
四、小结
1、通过这节课的学习,我的感受是:
五、自我检测
一、选择
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定 D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)×(-6) B.(-6)+(-4); C.0×(-2)(-3) D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)×(-3)=6 B.
C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24
二、计算 1、(-7.6)×0.5; 2、 .
3、 ; 4、;.
5、 ;
6、 .
七年级数学师生共用讲学稿(N0.13)
1.4有理数的乘法(3)
学习目标:
1、熟练有理数的乘法运算并能用乘法运算律简化运算.
2、让学生通过观察、思考、探究、讨论,主动地进行学习.
3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.
学习重点:正确运用运算律,使运算简化
学习难点:运用运算律,使运算简化
教学方法:观察、分析、归纳与练习相结合
教学过程
一、学前准备
1、下面两组练习,请同学们选择一组计算.并比较它们的结果:
1), (-7)×8 8×(-7)
[(-2)×(-6)]×5 (-2)×[(-6)×5]
2),(-)×(-) (-)×(-)
[×(-)]×(-4) ×[(-)×(-4)]
请以小组为单位,相互检查,看计算对了吗?
二、探究新知
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积 .
即:ab=
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积
即:(ab)c=
三、新知应用
1、例题
用两种方法计算 (+-)×12 3页
2、看谁算得快,算得准
1)(-7)×(-)× 2) 9 ×15.
四、小结
怎么样,这节课有什么收获,还有那些问题没有解决?
五、自我检测
1、(-85)×(-25)×(-4); 2、(-)×15×(-1);
3、()×30; 4、×(—7).
5、-9×(-11)+12×(-9) 6、
7、
1.4有理数的除法(1)
学习目标:
1、理解除法是乘法的逆运算;
2、掌握除法法则,会进行有理数的除法运算;
3、经历利用已有知识解决新问题的探索过程.
学习重点:有理数的除法法则
学习难点:理解商的符号及其绝对值与被除数和除数的关系
教学方法:观察、类比、对比、归纳
教学过程
一、学前准备
1、师生活动
1)、小明从家里到学校,每分钟走50米,共走了20分钟.
问小明家离学校有 米,列出的算式为 .
2)放学时,小明仍然以每分钟50米的速度回家,应该走 分钟.
列出的算式为
从上面这个例子你可以发现,有理数除法与乘法之间的关系是
二、合作交流、探究新知
1、小组合作完成
比较大小:8÷(-4) 8×(一);
(-15)÷3 (-15)×;
(一1)÷(一2) (-1)×(一)
再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 .
2|、两数相除,同号得 ,异号得 ,并把绝对值相 ,0除以任何一个不等于0的数,都得 .
2,运用法则计算:
(1)(-15)÷(-3); (2)(-12)÷(一); (3)(-8)÷(一)
3,师生共同完成P34例5.
三、新知应用
1、练习:P35
2、P35例6、例7、
3、练习: P36第1、2题
1页
四、回顾小结
通过这节课的学习,你的收获是:
存在的问题是:21世纪教育网
五、检测练习
1、计算
(1)(+48)÷(+6); (2) ;
(3)4÷(-2); (4)0÷(-1000).
[来源:21世纪教育网]
2、计算.
(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷;
六、作业
1、P38第4、6、7(1、3、5、7)题
2、选做题P39 12
1.4有理数的除法(2)
学习目标:
1、学会用计算器进行有理数的除法运算.
2、掌握有理数的混合运算顺序.
3、通过探究、练习,养成良好的学习习惯
学习重点:有理数的混合运算
学习难点:运算顺序的确定与性质符号的处理
教学方法:观察、类比、对比、归纳
教学过程
一、学前准备
1、计算
1)(—0.0318)÷(—1.4) 2)2+(—8)÷2
二、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算 法,再算 法。
3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是
.
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、18—6÷(—2)× 2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、师生小结
四、回顾与反思
请你回顾本节课所学习的主要内容
3页
五、自我检测
1、选择题
1)若两个有理数的和与它们的积都是正数,则这两个数( )
A.都是正数 B.是符号相同的非零数 C.都是负数 D.都是非负数
2)下列说法正确的是( )
A.负数没有倒数 B.正数的倒数比自身小
C .任何有理数都有倒数 D.-1的倒数是-1
3)关于0,下列说法不正确的是( )
A.0有相反数 B.0有绝对值
C.0有倒数 D.0是绝对值和相反数都相等的数
4)下列运算结果不一定为负数的是( )
A.异号两数相乘 B.异号两数相除
C.异号两数相加 D.奇数个负因数的乘积
5)下列运算有错误的是( )
A.÷(-3)=3×(-3) B.
C.8-(-2)=8+2 D.2-7=(+2)+(-7)
6)下列运算正确的是( )
A. ; B.0-2=-2; C.; D.(-2)÷(-4)=2
2、计算
1)6—(—12)÷(—3) 2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6) 4)
六、作业
1、P39第7题(4、5、7、8)、 第8题
2、选做题:P39第10、11、12、1314、15题
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.3有理数的加法
学习目标:
1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算.
2、经历探究有理数有理数加法法则过程,学会与他人交流合作.21世纪教育网
3、会利用有理数加法运算解决简单的实际问题.
学习重点:和的符号的确定
学习难点:异号两数想加
教学方法:引导、探究、归纳与练习相结合
教学过程
一、学前准备
1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为 4+(-2),
蓝队的净胜球数为 1+(-1)。
这里用到正数和负数的加法。那么,怎样计算4+(-2)呢
2、一艘潜艇在水下20米,过了一段时间又下潜了15米,现在潜艇在水下
米,你是怎么知道的?能用一个算式表示吗? .
又该怎样计算呢?下面我们一起借助数轴来讨论有理数的加法。
二、探究新知
下面的问题请同学们认真思考完成,再与同伴交流交流.
1、问题:1)一支球队在某场比赛中,上半场进了两个球,下半场进了3了个球,那么它的净胜球是 个,列出的算式应该是
2)、若这支球队在某场比赛中,上半场失了两个球,下半场又失了3个球,那么它的净胜球是 个,列出的算式应该是
3)、若这支球队在某场比赛中,上半场进了两个球,下半场又失了3个球,那么它的净胜球是 个,列出的算式应该是
4)、若这支球队在某场比赛中,上半场没有进球也没有失球,下半场失了3个球,那么它的净胜球是 个,列出的算式应该是
2、师生归纳两个有理数相加的几种情况.
3、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是:
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两21世纪教育网
次共向西走多少米?很明显,两次共向西走了 米.
这个问题用算式表示就是:
如图所示: (3页)
3) 如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:
4)利用数轴,求以下情况时这个人两次运动的结果:
先向东走3米,再向西走5米,这个人从起点向( )走了( )米;
先向东走5米,再向西走5米,这个人从起点向( )走了( )米;
先向西走5米,再向东走5米,这个人从起点向( )走了( )米。
写出这三种情况运动结果的算式
5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人
从起点向东(或向西)运动了 米。写成算式就是
你能从以上几个算式中发现有理数加法的运算法则吗?
有理数加法法则
(1)、同号的两数相加,取 的符号,并把 相加.
(2).绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 .
(3)、一个数同0相加,仍得 。
3、 应用探究
例1 计算(能完成吗,先自己动动手吧!)
(-3)+(-9); (2)(-4·7)+3·9.
例2 足球循环赛中,
红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。
解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。
三场比赛中,红队共进4球,失2球,净胜球数为
(+4)+(—2)=+(4—2)=2;
黄队共进2球,失4球,净胜球数为
(+2)+(—4)= —(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( )。21世纪教育网
3、课堂练习1.填空: 练习2. P18第1、2题
(1)(-3)+(-5)= ; (2)3+(-5)= ;
(3)5+(-3)= ; (4)7+(-7)= ;
(5)8+(-1)= ; (6)(-8)+1 = ;
(7)(-6)+0 = ; (8)0+(-2) = ;
四、谈谈你这堂课的收获,自己作个总结
五、作业 P23 1、P26 12、13
2.计算:
(1)(-13)+(-18); (2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5)(-)+(-); (6)1+(-1.5);
(7)(-3.04)+ 6 ; (8)+(-).
3.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.
4.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.
5.已知│a│= 8,│b│= 2.
(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值.
1.3有理数的减法(2)[来源:21世纪教育网]
学习目标:
1、理解加减法统一成加法运算的意义.21世纪教育网
2、会将有理数的加减混合运算转化为有理数的加法运算.
3、培养学习数学的兴趣,增强学习数学的信心.
学习重点、难点:有理数加减法统一成加法运算
教学方法:讲练相结合
教学过程
一、学前准备
1、一架飞机作特技表演,起飞后的高度变化如下表:
高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米
记作 +4.5千米 —3.2千米 +1.1千米 —1.4千米
请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米.
2、你是怎么算出来的,方法是
二、探究新知
1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!
2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.
3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写
如:(-20)+(+3)-(-5)-(+7) 有加法也有减法
=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法
= -20+3+5-7 再把加号记在脑子里,省略不写
可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.
4、师生完整写出解题过程
三、解决问题
1、解决引例中的问题,再比较前面的方法,你的感觉是
2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4
3、练习:计算 1)(—7)—(+5)+(—4)—(—10)
2)
三、巩固
1、小结:说说这节课的收获
2、P24 1、2
3、计算
1)27—18+(—7)—32 2)
四、作业
1、P25 5 2、P26第8题、14题
注意法则的应用,尤其是和的符号的确定!
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网