课件16张PPT。3.3.1 二元一次不等式(组) 与平面区域一、引例: 某工厂生产甲、乙两种产品,生产甲两种产品需要A种原料4t、 B种原料12t,产生的利润为2万元;生产乙种产品需要A种原料1t、 B种原料9t,产生的利润为1万元。现有库存A种原料10t、 B种原料60t,如何安排生产才能使利润最大?在关数据列表如下:设生产甲、乙两种产品的吨数分别为x、y利润何时达到最大?2019/3/10二元一次不等式表示的平面区域 在平面直角坐标系中,以二元一次方程x+y-1=0的解为坐标的点的集合{(x,y)|x+y-1=0}是经过点(0,1)和(1,0)的一条直线l,那么以二元一次不等式x+y-1>0的解为坐标的点的集合{(x,y)|x+y-1>0}是
什么图形? 探索结论 结论:二元一次不等式ax+by+c>0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域。不等式 ax+by+c<0表示的是另一侧的平面区域。x+y-1>0x+y-1<02019/3/10判断二元一次不等式表示哪一侧平面区域的方法x+y-1>0x+y-1<0 由于对在直线ax+by+c=0同
一侧所有点(x,y),把它的坐标
(x,y)代入ax+by+c,所得的实
数的符号都相同,故只需在这条
直线的某一侧取一特殊点(x0,y0)
以ax0+by0+c的正负的情况便可
判断ax+by+c>0表示这一直线
哪一侧的平面区域,特殊地,当
c≠0时常把原点作为此特殊点二元一次不等式表示平面区域例1 画出不等式2x+y-6<0表示的平面区域。注意:把直线画成虚线以表示区域不包括边界2x+y-6=0练习1:画出下列不等式所表示的平面区域:3x-4y-12>0-34二元一次不等式表示平面区域例2 画出不等式组
表示的平面区域。x-y+5=0x+y=0x=3二元一次不等式表示平面区域练习: 画出不等式组
表示的平面区域。(1)例3:根据所给图形,把图中的平面区域用不等式表示出来:(2)(3)二元一次不等式表示平面区域小结 由于对在直线ax+by+c=0同
一侧所有点(x,y),把它的坐标
(x,y)代入ax+by+c,所得的实
数的符号都相同,故只需在这条
直线的某一侧取一特殊点(x0,y0)
以ax0+by0+c的正负的情况便可
判断ax+by+c>0表示这一直线
哪一侧的平面区域,特殊地,当
c≠0时常把原点作为此特殊点2、画图时应力求准确,否则将得不到正确结果。1、若不等式中不含0,则边界应画成虚线,否则应画成实线。应该注意的几个问题:二元一次不等式表示平面区域作业:P93 习题 3.3 1. 2课件17张PPT。简单的线性规划第二讲 线性规划可行域上的最优解2019/3/10复习判断二元一次不等式表示哪一侧平面区域的方法x+y-1>0x+y-1<0 由于对在直线ax+by+c=0同
一侧所有点(x,y),把它的坐标
(x,y)代入ax+by+c,所得的实
数的符号都相同,故只需在这条
直线的某一侧取一特殊点(x0,y0)
以ax0+by0+c的正负的情况便可
判断ax+by+c>0表示这一直线
哪一侧的平面区域,特殊地,当
c≠0时常把原点作为此特殊点2019/3/10复习回顾1.在同一坐标系上作出下列直线:2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo2019/3/102.作出下列不等式组的所表示的平面区域2019/3/10y问题1:x 有无最大(小)值?问题2:y 有无最大(小)值?问题3:2x+y 有无最大(小)值?2019/3/10二.提出问题把上面两个问题综合起来:设z=2x+y,求满足时,z的最大值和最小值.2019/3/10y直线L越往右平移,t随之增大.以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.线性规划问题:
设z=2x+y,式中变量满足
下列条件:
求z的最大值与最小值。 目标函数
(线性目标函数)线性约
束条件任何一个满足不等式组的(x,y)可行解可行域所有的最优解线性规划问题线性规划线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 可行解 :满足线性约束条件的解(x,y)叫可行解; 可行域 :由所有可行解组成的集合叫做可行域; 最优解 :使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。 可行域2x+y=32x+y=12(1,1)(5,2)线性规划练习1: 解下列线性规划问题:
求z=2x+y的最大值和最小值,使式中x、y满足下
列条件:解线性规划问题的一般步骤:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找到最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值。探索结论2x+y=02x+y=-32x+y=3答案:当x=-1,y=-1时,z=2x+y有最小值-3.当x=2,y=-1时,z=2x+y有最大值3.线性规划例2 解下列线性规划问题:
求z=300x+900y的最大值和最小值,使式中x、y满足下列条件:探索结论x+3y=0300x+900y=0300x+900y=112500答案:当x=0,y=0时,z=300x+900y有最小值0.当x=0,y=125时,z=300x+900y有最大值112500.练习2、已知
求 z=3x+5y的最大值和最小值。551Oxy1-15x+3y=15X-5y=3y=x+1A(-2,-1)B(3/2,5/2)z=3x+5y变式:目标函数为:z=3x-yC(3,0)走进高考:C解线性规划问题的步骤: (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。 (1)画:画出线性约束条件所表示的可行域; 小 结 几个结论:1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。
2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义——在y轴上的截距或其相反数。
1、求z=2x+y的最大值,使式中x、y满足下列条件:作业:2、求z=3x-y的最大值,使式中x、y满足下列条件:解下列线性规划问题:课件11张PPT。3.3.4简单的线性规划3.3.4简单的线性规划线性规划的应用1、已知:-1≤a+b≤1,1≤a-2b≤3,求a+3b的取值范围。解法1:由待定系数法: 设 a+3b=m(a+b)+n(a-2 b)
=(m+n)a+(m-2n)b
∴m+n=1,m-2n=3
m=5/3 ,n=-2/3
∴ a+3b=5/3×(a+b)-2/3×(a-2 b)
∵-1≤a+b≤1,1≤a-2 b≤3
∴-11/3≤a+3 b≤1解法2:∵-1≤a+b≤1------①
1≤a-2 b≤3-----②
∴-2≤2a+2 b≤2------③
-3≤2 b-a≤-1 ------④
∴②+③得:-1/3≤a≤5/3
①+④得:-4/3≤b≤0
∴-13/3≤a+3 b≤5/3想一想线性规划的应用 1、已知:-1≤a+b≤1,1≤a-2b≤3,求a+3b的取值范围。想一想解法3 约束条件为:目标函数为:z=a+3b由图形知:-11/3≤z≤1
即 -11/3≤a+3 b≤1(x,y)(0,0)(2,3)(1,0)131(x,y)(-1,0)[0,2]上述不等式表示的平面区域如右图:平移法 线性规划的实际应用解线性规划应用问题的一般步骤:
1、理清题意,列出表格;
2、设好变元,列出线性约束条件(不 等式组)与目标函数;
3、准确作图;
4、根据题设精度计算。1、P93 习题 3.3 A组4 作业:课件12张PPT。3.2.2简单线性规划解线性规划问题的步骤: (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。 (1)画:画出线性约束条件所表示的可行域;一.复习回顾使z=2x+y取得最大值的可行解 ,
且最大值为 ;复习1.已知二元一次不等式组(1)画出不等式组所表示的平面区域;满足 的解(x,y)都叫做可行解;z=2x+y 叫做 ;(2)设z=2x+y,则式中变量x,y满足的二元一次不等式组叫做x,y的 ;y=-1x-y=0x+y=12x+y=0(-1,-1)(2,-1)3使z=2x+y取得最小值的可行解 ,
且最小值为 ;
这两个可行解都叫做问题的 。约束条件目标函数约束条件(2,-1)3(-1,-1)-3最优解(3,8) -3 练习:1、2、C3、A4、线性规划的实际应用 例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润
总额最大?纺纱厂的效益问题线性规划的实际应用解线性规划应用问题的一般步骤:
1、理清题意,列出表格;
2、设好变元,列出线性约束条件(不 等式组)与目标函数;
3、准确作图;
4、根据题设精度计算。线性规划的实际应用 例1 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?纺纱厂的效益问题线性规划的实际应用解:设生产甲、乙两种棉纱分别为x吨、y吨,利润总额为z元,则Z=600x+900y作出可行域,可知直线Z=600x+900y通过点M时利润最大。解方程组得点M的坐标x=350/3≈117y=200/3≈67答:应生产甲、乙两种棉纱分别为117吨、67吨,能使利润总额达到最大。线性规划的实际应用小结解线性规划应用问题的一般步骤:
1、理清题意,列出表格;
2、设好变元,列出线性约束条件(不 等式组)与目标函数;
3、准确作图;
4、根据题设精度计算。作业:1、P91 练习2