3.1.3导数的几何意义

文档属性

名称 3.1.3导数的几何意义
格式 rar
文件大小 138.1KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2010-11-19 13:59:00

图片预览

文档简介

(共19张PPT)
3.1.3导数的几何意义
先来复习导数的概念
定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量Δx时函数有相应的改变量Δy=f(x0+ Δx)- f(x0).如果当Δx 0 时,Δy/Δx的极限存在,这个极限就叫做函数f(x)在点x0处的导数(或变化率)记作 即:
瞬时速度就是位移函数s(t)对时间t的导数.
是函数f(x)在以x0与x0+Δx
为端点的区间[x0,x0+Δx](或[x0+Δx,x0])上的平均变化率,而导数则是函数f(x)在点x0 处的变化率,它反映了函数随自变量变化而变化的快慢程度.
如果函数y=f(x)在点x=x0存在导数,就说函数y=f(x)在点x0处可导,如果极限不存在,就说函数 f(x)在点x0处不可导.
由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:
注意:这里的增量不是一般意义上的增量,它可正也可负.
自变量的增量Δx的形式是多样的,但不论Δx选择
哪种形式, Δy也必须选择与之相对应的形式.
下面来看导数的几何意义:
β
y=f(x)
P
Q
M
Δx
Δy
O
x
y
β
P
y=f(x)
Q
M
Δx
Δy
O
x
y
如图,曲线C是函数y=f(x)
的图象,P(x0,y0)是曲线C上的
任意一点,Q(x0+Δx,y0+Δy)
为P邻近一点,PQ为C的割线,
PM//x轴,QM//y轴,β为PQ的
倾斜角.
斜率!
P
Q
o
x
y
y=f(x)
割线
切线
T
请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.
我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.
设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.
即:
这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数在x=x0处的导数.
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
Q
P
y
=
x
2
+1
x
y
-
1
1
1
O
j
M
D
y
D
x
因此,切线方程为y-2=2(x-1),
即y=2x.
求曲线在某点处的切线方程
的基本步骤:先利用切线斜率
的定义求出切线的斜率,然后
利用点斜式求切线方程.
练习:如图已知曲线 ,求:
(1)点P处的切线的斜率; (2)点P处的切线方程.
y
x
-2
-1
1
2
-2
-1
1
2
3
4
O
P
即点P处的切线的斜率等于4.
(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.
在不致发生混淆时,导函数也简称导数.
什么是导函数
由函数f(x)在x=x0处求导数的过程可以看到,当时,f’(x0) 是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:
如何求函数y=f(x)的导数
看一个例子:
下面把前面知识小结:
a.导数是从众多实际问题中抽象出来的具有相同的数
学表达式的一个重要概念,要从它的几何意义和物
理意义了解认识这一概念的实质,学会用事物在全 过程中的发展变化规律来确定它在某一时刻的状态。
b.要切实掌握求导数的三个步骤:
(1)求函数的增 量;
(2)求平均变化率;
(3)取极限,得导数。
(3)函数f(x)在点x0处的导数 就是导函数
在x=x0处的函数值,即 。这也是
求函数在点x0处的导数的方法之一。
小结:
(2)函数的导数,是指某一区间内任意点x而言的,
就是函数f(x)的导函数 。
(1)函数在一点处的导数,就是在该点的函数的改
变量与自变量的改变量之比的极限,它是一个
常数,不是变数。
c.弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”
之间的区别与联系。
(1)求出函数在点x0处的变化率 ,得到曲线
在点(x0,f(x0))的切线的斜率。
(2)根据直线方程的点斜式写出切线方程,即
d.求切线方程的步骤:
小结:
无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。
作业:
P87 A组 4,5,6.(其中6题作在书上)
第二教材 P72 4,5,6