相反数与绝对值
一、学习目标:
1、了解相反数的意义,会求有理数的相反数;
2、了解绝对值的概念,会求有理数的绝对值;
3、会利用绝对值比较两负数的大小。
二、重点、难点:
理解相反数并掌握双重符号的化简原则,难点是能正确理解绝对值在数轴上表示的意义。
三、学习过程:
(一)自主学习
1、互为相反数:
(1) 观察数轴上两对点-4.5和4.5,+3和-3,他们的位置关系怎样?有什么区别和联系?
(2) 什么样的数被称为互为相反数?
(3) 指出下列各数的相反数;
-3, -0.025, 5, -4, 0
(4)在数轴上,表示互为相反数的点分别在( )的两侧,并且到( )的距离相等;
2、绝对值:
(1)什么叫绝对值?
(2)
在数轴上,-4.5,-3,-0.5,0,0.5,3,4.5到原点的距离是多少?一个数与他的绝对值之间存在着怎样的联系
(3)求出下列各数的绝对值:
∣+5∣= ∣-4∣= ∣+0.04∣=
∣2.5∣= ∣0∣= ∣-1.104∣=
3、两负数比较大小:
(1)负数绝对值大了,离原点就越远,就越靠近数轴的( )边,因此,两负数比较大小,绝对值大的数( )。
(2)根据例1解答:
比较:-4∕7和-6∕11
(二)合作交流:
1、独立完成,小组内交流;
2、进行组际交流;
(三)精讲点拨:
1、互为相反数是两个数的关系,注意互为相反数的绝对值相等;
2、0的相反数和绝对值都是它本身;
3、两负数比较大小,绝对值大的反而小;
(四)有效训练
1、若x+1与-3互为相反数,则x=( );
2、说出下列各数的相反数和绝对值:
0.25, -18 , -0.002 , 0 , 5
3.比较下列各组数的大小:
(1)0和-1 (2)0.25和0 (3)-0.125和-0.12
(四)拓展提升:
1、若-x=-(-3.5),则x=______;若a=-6.3,则-a=______;
2、若|a|=6,则a=______; (2)若|-b|=0.87,则b=______;
3、若x+|x|=0,则x是______数;
四、小结:
通过本节课的学习你都学到了哪些知识?
五、达标检测:
课本P35:练习1、2、3;
六、作业:
课本P36:习题2.3 A组