本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
12.3等腰三角形(2)
等边三角形(一)
教学目的
1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2. 熟识等边三角形的性质及判定.
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点、
等腰三角形的性质及其应用。
教学难点
简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少
二、新课[来源:21世纪教育网]
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗 如果是,有几条对称轴
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样
问题2:求∠1是否还有其它方法
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60°的等腰三角形,其它两个内角也为60°( )
2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业
1.课本─7,9
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,
∠EOD的度数。
(一)课本─
课后作业:
21世纪教育网
21世纪教育网
等边三角形(二)
教学目标
掌握等边三角形的性质和判定方法.
培养分析问题、解决问题的能力.
教学重点
等边三角形的性质和判定方法.
教学难点[来源:21世纪教育网]
等边三角形性质的应用
教学过程[来源:21世纪教育网]
I创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.[来源:21世纪教育网]
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
1、 III课堂小结
2、 等腰三角形和性质
3、 等腰三角形的条件
V布置作业
1.教科书练习1、2
2.选做题:
(1)教科书习题12.3第ll题.
(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个
(3)《课堂感悟与探究》
21世纪教育网
等边三角形(三)
教学过程
1、 复习等腰三角形的判定与性质
2、 新授:
1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等
2.等边三角形的判定:
三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映的是直角三角形中边与角之间的关系.
3.由学生解答课本的例子;
4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,
∠ABC=120o, 求证: AB=2BC21世纪教育网
分析 由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形, 斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.
B
证明: 过A作AE∥BC交BD的延长线于E
∵DB⊥BC(已知)
∴∠AED=90o (两直线平行内错角相等)
在△ADE和△CDB中
∴△ADE≌△CDB(AAS)
∴AE=CB(全等三角形的对应边相等)
∵∠ABC=120o,DB⊥BC(已知)
∴∠ABD=30o
在Rt△ABE中,∠ABD=30o
∴AE=AB(在直角三角形中,如果一个锐角等于30o,
那么它所对的直角边等于斜边的一半)
∴BC=AB 即AB=2BC
点评 本题还可过C作CE∥AB
5、训练:如图所示,在等边△ABC的边的延长线上取一点E,以CE为边作等边△CDE,使它与△ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点,求证:△CNM是等边三角形.21世纪教育网
分析 由已知易证明△ADC≌△BEC,得BE=AD,∠EBC=∠DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明△CNM是等边三角形,只须证MC=CN,∠MCN=60o,所以要证△NBC≌△MAC,由上述已推出的结论,根据边角边公里,可证得△NBC≌△MAC
证明:∵等边△ABC和等边△DCE,
∴BC=AC,CD=CE,(等边三角形的边相等)
∠BCA=∠DCE=60o(等边三角形的每个角都是60)
∴∠BCE=∠DCA
∴△BCE≌△ACD(SAS)
∴∠EBC=∠DAC(全等三角形的对应角相等)21世纪教育网
BE=AD(全等三角形的对应边相等)
又∵BN=BE,AM=AD(中点定义)
∴BN=AM
∴△NBC≌△MAC(SAS)
∴CM=CN(全等三角形的对应边相等)
∠ACM=∠BCN(全等三角形的对应角相等)
∴∠MCN=∠ACB=60o
∴△MCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形)
解题小结
1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较复杂的几何问题经常用这种方法进行分析
2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得△MCN是一个含60o角的等腰三角形,在较复杂的图形中,如何准确地找到所需要的全等三角形是证题的关键.
三、小结本节知识
四、作业:课本第13,14题
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网