2010—2011学年度上学期单元测试
高二数学试题【湘教版】
选修2-1第3单元
说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分)。
1.在平行六面体ABCD—A1B1C1D1中,M为AC与BD的交点,
若=,=,=.则下列向量中与相
等的向量是 ( )
A. B.
C. D.
2.在下列条件中,使M与A、B、C一定共面的是 ( )
A. B.
C. D.
3.在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为( )
A.60° B.90° C.105° D.75°
4.如图,ABCD—A1B1C1D1是正方体,B1E1=D1F1=,则BE1与DF1所成角的余弦值是 ( )
A. B.
C. D.
5.如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是 ( )
A. B.
C. D.
6.正四棱锥的高,底边长,则异面直线和
之间的距离 ( )
A. B. C . D.
7.已知是各条棱长均等于的正三棱柱,是侧
棱的中点。点到平面 的距离 ( )
A. B.
C . D.
8.在棱长为的正方体中,则平面与平面间的距离 ( )
A. B. C . D.
9.在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥底面ABC,则直线OD与平面PBC所成角的正弦值 ( )
A. B. C. D.
10.在直三棱柱中,底面是等腰直角三角形,,侧棱,D,E分别是与的中点,点E在平面ABD上的射影是的重心G。则与平面ABD所成角的余弦值 ( )
A. B. C . D.
11.正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且,则二面角的大小 ( )
A. B. C . D.
12.正四棱柱中,底面边长为,侧棱长为4,E,F分别为棱AB,CD的中点,。则三棱锥的体积V ( )
A. B. C . D.
二、填空题:请把答案填在题中横线上(每小题6分,共24分)。
13.在正方体中,为的中点,则异面直线和间的距离 。
14. 在棱长为的正方体中,、分别是、的中点,求点到截面的距离 。
15.已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离 。
16.已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值 。
三、解答题:解答应写出文字说明、证明过程或演算步骤(共74分)。
17.(12分))如图,已知正方体的棱长为a,M为的中点,点N在'上,且,试求MN的长.
18.(12分)如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(1)求向量的坐标;
(2)设向量和的夹角为θ,求cosθ的值
19.(12分)在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)求异面直线AE与CD所成角的余弦值。
20.(12分)
如图, 在矩形中,点分别在线段上,.沿直线将 翻折成,使平面.
(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段上,若沿直线将四边形向上翻折,使与
重合,求线段的长。
21.(14分)已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:
(Ⅰ)D1E与平面BC1D所成角的大小;
(Ⅱ)二面角D-BC1-C的大小;
(Ⅲ)异面直线B1D1与BC1之间的距离.
22.(14分)如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G。
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离。
参考答案
一、选择题
AABAA CABDB AC
二、填空题
13.;14.;15.1;16.。
三、解答题
17.解:以D为原点,建立如图空间直角坐标系.因为正方体棱长为a,所以B(a,a,0),A'(a,0,a),(0,a,a),(0,0,a).
由于M为的中点,取中点O',所以M(,,),O'(,,a).因为,所以N为的四等分,从而N为的中点,故N(,,a).
根据空间两点距离公式,可得
.
18.解:(1)过D作DE⊥BC,垂足为E,在Rt△BDC中,由∠BDC=90°,∠DCB=30°,BC=2,得BD=1,CD=,∴DE=CD·sin30°=.
OE=OB-BE=OB-BD·cos60°=1-.
∴D点坐标为(0,-),即向量OD[TX→]的坐标为{0,-}.
(2)依题意:,
所以.
设向量和的夹角为θ,则
cosθ=.
19.(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,又AB⊥AD.∴AB⊥平面PAD.又∵AE⊥PD,∴PD⊥平面ABE,故BE⊥PD.
(2)解:以A为原点,AB、AD、AP所在直线为坐标轴,建立空间直角坐标系,则点C、D的坐标分别为(a,a,0),(0,2a,0).
∵PA⊥平面ABCD,∠PDA是PD与底面ABCD所成的角,∴∠PDA=30°.
于是,在Rt△AED中,由AD=2a,得AE=a.过E作EF⊥AD,垂足为F,在Rt△AFE中,由AE=a,∠EAF=60°,得AF=,EF=a,∴E(0,a)
于是,={-a,a,0}
设与的夹角为θ,则由
cosθ=
AE与CD所成角的余弦值为.
评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.
20.(Ⅰ)解:取线段EF的中点H,连结,因为=
及H是EF的中点,所以,
又因为平面平面.
如图建立空间直角坐标系A-xyz
则(2,2,),C(10,8,0),
F(4,0,0),D(10,0,0).
故=(-2,2,2),=(6,0,0).
设=(x,y,z)为平面的一个法向量,
-2x+2y+2z=0
所以
6x=0.
取,则。
又平面的一个法向量,
故。
所以二面角的余弦值为
(Ⅱ)解:设则,
因为翻折后,与重合,所以,
故, ,得,
经检验,此时点在线段上,
所以。
方法二:
(Ⅰ)解:取线段的中点,的中点,连结
。
因为=及是的中点,
所以
又因为平面平面,
所以平面,
又平面,
故,
又因为、是、的中点,
易知∥,
所以,
于是面,
所以为二面角的平面角,
在中,=,=2,=
所以.
故二面角的余弦值为。
(Ⅱ)解:设,
因为翻折后,与重合,
所以,
而,
得,
经检验,此时点在线段上,
所以。21.解:建立坐标系如图,则、,,
,,,,,
,,.
(Ⅰ)不难证明为平面BC1D的法向量,
∵
∴ D1E与平面BC1D所成的角的大小为
(即).
(Ⅱ)、分别为平面BC1D、BC1C的法向量,
∵ ,∴ 二面角D-BC1-C的大小为.
(Ⅲ)∵ B1D1∥平面BC1D,∴ B1D1与BC1之间的距离为.
22.(证明(1)用纯粹的几何方法要辗转证明EF∥AC,EG∥B1C,FG∥AB1来证明,而我们借用向量法使问题代数化,运算简洁,思路简单明了。)
(1)分析:要证平面EFG平面ACB1,由题设知只要证BD1垂直平面ACB1即可。
证明:以D为坐标原点,建立空间直角坐标系,如图5,不妨设正方体棱长为a,则A(a,0,0),B(a,a,0),C(0,a,0),D1(0,0,a),B1(a,a,a),E(xE,0,a),F(0,yF,a),G(0,0,zG)。
∴=(-a,-a,a),=(0,a,a),(-xE,yF,0),=(-a,a,0),=(-a,0,-a),
∵·=(-a,-a,a)·(0,a,a)=0,
∴⊥ ,
同理 ⊥,
而与不共线且相交于点A,
∴⊥平面ACB1,又已知⊥平面EFG,
∴ 平面EFG∥平面ACB1;
又因为⊥平面EFG,所以 ⊥,
则·=0,
即 (-a,-a,a)·(-xE,yF,0)=0,
化简得 xE-yF=0;
同理 xE-zG=0, yF-zG=0,
易得 ==,
∴ △EFG为正三角形。
(2)解:因为△EFG是正三角形,显然当△EFG与
△ A1C1D重合时,△EFG的边最长,其面积也最大,此时,=A1C1=·a,
∴=
= ·sin600
= (·a)2·
=·a2 。
此时EF与B1C的距离即为A1C1与B1C的距离,由于两异面直线所在平面平行,所求距离转化为求点B1到平面 A1C1D的距离,记A1C1与B1D1交于点O1,作O1H∥D1B并交BB1于点H,则O1H⊥平面A1C1D,垂足为O1,则O1(,,a),H(a,a,),而作为平面A1C1D的法向量,
所以异面直线EF与B1C的距离设为d是
d = ==·a。
(证明(2)时一般要找到求这两平面距离的两点,如图5*,而这两点为K与J,在立体图形中较难确定,且较难想到通过作辅助线DO1,OB1来得到,加上在如此复杂的空间图形中容易思维混乱,但只要借助平面法向量求线段的射影长度的思想,结合题设,使思路清晰明了,最终使问题的解决明朗化;把握这种思想,不管是空间线线距离,线面距离,面面距离问题,一般我们都能转化成点线或点面距离,再借助平面法向量很好地解决了。)
图
图
图
A
A1
D
C
B
B1
C1
图
图
A1
B1
C1
D1
A
B
C
D
E
x
y
z