课件21张PPT。xt007引课我们知道,当直线和平面垂直时,该直线叫做平面的垂线。如果直线和平面不垂直,是不是也该给它取个名字呢?此时又该如何刻画直线和平面的这种关系呢?2.31(2)直线与平面所成的角1.平面的斜线如图,若一条直线PA和一个平面α相交,但不垂直,那么这条直线就叫做这个平面的斜线,斜线和平面的交点A叫做斜足。PA斜足斜线2.直线和平面所成的角如图,过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。斜线斜足射影垂足垂线一条直线垂直于平面,我们说它所成的角是直角;一条直线和平面平行,或在平面内,我们说它所成的角是00的角。规定:想一想:直线与平面所成的角θ的取值范围是什么?例2 已知 aO斜线垂线斜线在平面上的射影ACBADCBD分别指出对角线A1C
与六个面所成的角.找垂线
得射影
2.如图:正方体ABCD-A1B1C1D1中,求:
(1)AB1在面BB1D1D中的射影
(2)AB1在面A1B1CD中的射影
(3)AB1在面CDD1C1中的射影ADCB巩固练习
2.如图:正方体ABCD-A1B1C1D1中,求:
(1)AB1在面BB1D1D中的射影
(2)AB1在面A1B1CD中的射影
(3)AB1在面CDD1C1中的射影A1D1C1B1ADCB巩固练习
2.如图:正方体ABCD-A1B1C1D1中,求:
(1)AB1在面BB1D1D中的射影
(2)AB1在面A1B1CD中的射影
(3)AB1在面CDD1C1中的射影ADCB巩固练习
2.如图:正方体ABCD-A1B1C1D1中,求:
(1)AB1在面BB1D1D中的射影
(2)AB1在面A1B1CD中的射影
(3)AB1在面CDD1C1中的射影ADCB巩固练习例1、如图,正方体ABCD-A1B1C1D1中,求
(1)直线A1B和平面 BCC1B1所成的角。
(2)直线A1B和平面A1B1CD所成的角。O例题示范,巩固新知分析:找出直线A1B在平面BCC1B1和平面A1B1CD内的射影,就可以求出A1B和平面BCC1B1和平面A1B1CD所成的角。阅读教科书P67上的解答过程
3.如图:正方体ABCD-A1B1C1D1中,求:
(1)A1C1与面ABCD所成的角
(2) A1C1与面BB1D1D所成的角
(3) A1C1与面BB1C1C所成的角
(4)A1C1与面ABC1D1所成的角ADCB0o巩固练习
3.如图:正方体ABCD-A1B1C1D1中,求:
(1)A1C1与面ABCD所成的角
(2) A1C1与面BB1D1D所成的角
(3) A1C1与面BB1C1C所成的角
(4)A1C1与面ABC1D1所成的角ADCB90o巩固练习
3.如图:正方体ABCD-A1B1C1D1中,求:
(1)A1C1与面ABCD所成的角
(2) A1C1与面BB1D1D所成的角
(3) A1C1与面BB1C1C所成的角
(4)A1C1与面ABC1D1所成的角ADCB45o巩固练习
3.如图:正方体ABCD-A1B1C1D1中,求:
(1)A1C1与面ABCD所成的角
(2) A1C1与面BB1D1D所成的角
(3) A1C1与面BB1C1C所成的角
(4)A1C1与面ABC1D1所成的角ADCB30o巩固练习归纳小结1.直线与平面垂直的概念(1)利用定义;(2)利用判定定理.3.数学思想方法:转化的思想3.直线与平面垂直的判定垂直于平面内任意一条直线2. 线面角的概念及范围课件20张PPT。2.1.2空间中直线与直线之间的位置关系好好学习 天天向上xt007复习与准备:平面内两条直线的位置关系相交直线
(有一个公共点)平行直线
(无公共点)两路相交立交桥立交桥中, 两条路线AB, CD既不平行,又不相交NEXTBACK六角螺母NEXTBACKa与b是相交直线a与b是平行直线a与b是异面直线答:不一定:它们可能异面,可能相交,也可能平行。 分别在两个平面内的两条直线是否一定异面?合作探究一NEXTBACK练习1:在教室里找出几对异面直线的例子。NEXTBACK
两直线异面的判别二 : 两条直线不同在任何一个平面内.1.异面直线的定义:不同在 任何 一个平面内的两条直线叫做异面直线。两直线异面的判别一 : 两条直线 既不相交、又不平行.注1 按平面基本性质分同在一个平面内相交直线平行直线 不同在任何一个平面内:异面直线 有一个公共点: 按公共点个数分相交直线无 公 共 点平行直线异面直线NEXTBACK 2.1.2 空间中直线与直线之间的位置关系 2.异面直线的画法说明: 画异面直线时 , 为了体现
它们不共面的特点。常借
助一个或两个平面来衬托.如图:(1)(3)(2)NEXTBACK合作探究二如图是一个正方体的展开图,如果将它还原为正方体, 那么 AB ,
CD , EF , GH 这四条线段所在直线是异面直线的有 对?还原正方体答:共有三对NEXTBACK3.异面直线所成的角(重点、难点) 在平面内,两条直线相交成四
个角, 其中不大于90度的角称为它
们的夹角, 用以刻画两直线的错开
程度, 如图. 在空间,如图所示, 正方体ABCD-EFGH中, 异面直线AB与HF的错开程度可以怎样来刻画呢?(2)问题提出(1)复习回顾NEXTBACK(3)解决问题异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作 直线 a′∥a , b ′∥b 则把 a ′与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角).O思想方法 : 平移转化成相交直线所成的角,即化空间图形问题为平面图形问题思考 : 这个角的大小与O点的位置有关吗 ? 即O点位置不同时, 这一角的大小是否改变?NEXTBACK(4)理论支持㈠:我们知道,在同一平面内, 如果两条直线都和第三条直线平行,
那么这两条直线互相平行.在空间这一规律是否还成立呢?观察 : 将一张纸如图进行折叠 , 则各折痕及边 a, b, c, d, e, …
之间有何关系?a∥b ∥c ∥d ∥e ∥ …公理4:在空间平行于同一条直线的两条直线互相平行.———平行线的传递性NEXTBACK推广:在空间平行于一条已知直线的所有直线都互相平行.㈡:在平面内, 我们可以证明 “ 如果一个角的两边与另一个角的
两边分别平行,那么这两个角相等或互补 ”.空间中这一结
论是否仍然成立呢?定理(等角定理):空间中,如果两个角的两边分别对应平行,
那么这两个角相等或互补.观察 :如图所示,长方体ABCD-A1B1C1D1中, ∠ADC与∠A1D1C1 ,
∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小
关系如何?NEXTBACKNEXTBACK思考 : 这个角的大小与O点的位置有关吗 ? 即O点位置不同时, 这一角的大小
是否改变?∵ a′∥a , a″ ∥a∴ a′∥ a″ (公理4),解答: 如图设a ′与 b ′相交所成的角为∠1, a ″与 b 所成的角为∠2 ,同理 b′∥b″, ∴ ∠1 = ∠2 (等角定理)
答 :
这个角的大小与O点的位置无关.
下图长方体中平行相交异面点击
旋转长方体② BD 和FH是 直线① EC 和BH是 直线③BH 和DC是 直线(2).与棱 A B 所在直线异面的棱共有 条?4分别是 :CG、HD、GF、HE课后思考: 这个长方体的棱中共有多少对异面直线?(1)说出以下各对线段的位置关系?NEXTBACK4.例题选讲例1例2 如图,正方体ABCD-EFGH中,O为侧面ADHE的中心,求
(1)BE与CG所成的角?
(2)FO与BD所成的角? NEXTBACK连接HA、AF,(2)连接FH,∴四边形BFHD为平行四边形,∴HF∥BD∴∠HFO(或其补角)为异面直线 FO与BD所成的角则AH=HF=FA∴ △AFH为等边△NEXTBACK 如图,已知长方体ABCD-EFGH中, AB = , AD = , AE = 2
(1)求BC 和EG 所成的角是多少度?
(2)求AE 和BG 所成的角是多少度?解答:NEXTBACK5.课堂练习6.课堂小结NEXTBACK作业: P51:4,6好好学习 天天向上BACK课件7张PPT。1.2.2 空间几何体的直观图画直观图的方法:斜二侧法1、画水平放置的正六边形的直观图.滨海中学 李鹏
规则:(3)已知图形中平行于x轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于 或轴 轴的线段;(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的 轴和 轴,两轴相交于O,且使 ,它们确定的平面表示水平面;2、画水平放置的圆的直观图.EFGH3、画长、宽、高分别为4cm、3cm、2cm的
长方体的直观图.NMPQADCA1BB1C1D1规则:(1)在已知图形中取水平平面,取互相垂直的轴ox、oy,再取oz轴,使∠xoy=450,且∠xoz=900 ;(4)已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半(2)画直观图时,把它们画成对应的 轴,使 所确定的平面表示水平平面; (3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于 轴 轴或 轴的线段;4、已知几何体的三视图如下,画出它的直观图.正视图侧视图俯视图.练习1. 对几何体三视图,下列说法正确的是:( )A . 正视图反映物体的长和宽B . 俯视图反映物体的长和高C . 侧视图反映物体的高和宽D . 正视图反映物体的高和宽C2 . 若某几何体有一种视图为圆,那么这个几何体可能是
____________球