课件115张PPT。 2010年河南省初中学业水平
暨高级中等学校招生考试
数学试卷抽样分析 新乡市基础教育教学研究室 魏银光
2010年10月28日近3年中考数学试卷结构对照表一、2010年中考数学试卷卷面分析1.数学试卷结构近3年中考数学试卷结构对照表1.数学试卷结构近3年中考数学试卷结构对照表1.数学试卷结构2.试卷主要特点(1)考查内容依据课程《标准》,体现基础性(2)突出考查学生对数学思想的理解及运用??? (3)密切联系实际,突出考查数学应用能力(4)关注合情推理与演绎推理的有机结合,重视对学生探究能力及推理能力的考查(5)加强了对探究特别是动态探究题考查的份量二、2010年中考数学试卷各项数据抽样统计1.2010年河南省中招数学试卷各题得分率统计表(表1)二、2010年中考数学试卷各项数据抽样统计2. 2010年河南省中招数学试题难度分布表(表2)近3年试卷知识点难度分布图表二、2010年中考数学试卷各项数据抽样统计3.2010年河南省中招数学试题“分段”抽样统计表(表3)二、2010年中考数学试卷各项数据抽样统计 4. 近3年总成绩频率分布直方图比较三、试题考查目标及学生答题情况分析1.选择题
作为第一大题选择题,前5个小题均为容易题,没有给学生设置大的障碍,有利于学生稳定紧张情绪,体现了对学生的人文关怀,有利于学生发挥自己的实际水平.
第6小题属中档题,为第一大题的把关题.(10第1题) 的相反数是 ( )
A. B. C. D. 【课标要求】
借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(07第1题)(-1)3计算的结果是 ( )
A.-1 B.1 C.-3 D.3(08第1题)-1/7的绝对值是 ( ) A.1/7 B.- 1/7 C.7 D.-7 (05第1题)计算-32的结果是 ( )
A.-9 B.9 C.-6 D.6(06第1题) 的倒数是 ( )
A.-3 B.3 C.-1/3 D.1/3(09第1题)- 5的相反数是 ( )
(A) (B)﹣ (C) ﹣5 (D) 5(10第1题) 的相反数是 ( )
A. B. C. D. 如图,在数轴上表示实数 的点可能是( )
A.点 B.点
C.点 D.点了解无理数和实数的概念,知道实数与数轴上的点一一对应. (10第2题)我省2009年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为 ( )
A. 元 B. 元
C. 元 D. 元【课标要求】
(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示);
(2)了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.(06第2题)2005年末我国外汇储备达到8189亿美元,8189亿用科学记数法表示(保留3个有效数字)是( )
A.8.19×1011 B.8.18×1011 C. 8.19×1012 D.8.18×1012 (07B第2题)2007年某省初中毕业生人数达到187.7万人,187.7万用科学记数法表示(保留3个有效数字)是 ( )
A.1.87×102 B.1.88×102 C.1.88×106 D. 1.87×106(08第2题)为支援四川地震灾区,中央电视台于5月18日晚举办了《爱的奉献》赈灾晚会,晚会现场捐款达1514000000元.1514000000用科学计数法表示正确的是 ( )
A.1514×106 B.15.14×108 C.1.514×109 D. 1.514× 1010(05第4题)2004年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元.136515亿元用科学记数法表示(保留4个有效数字)为 ( )
A. 元 B. 元 C. 元 D. 元(10第2题)我省2009年全年生产总值比2008年增长10.7%,达到约19367亿元.19 367亿元用科学记数法表示为( )
A. 元 B. 元 C. 元 D. 元(10第3题)在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:
.
则这组数据的众数和极差分别是 ( )
(A)1.85和0.21 (B)2.31和0.46
(C)1.85和0.60 (D)2.31和0.60【课标要求】
(1)通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果;
(2)在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表示数据的集中程度;(3)探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度.(05第11题)小张和小李去练习射击,
第一轮10枪打完后两人的成绩如图所
示,通常新手的成绩不太稳定,那么
根据图中的信息,估计小张和小李两
人中新手是 .(07第4题)为了了解某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:
则关于这10户家庭的月用水量,下列说法错误的是( )
A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨(05第14题)某单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,那么这12名选手的平均成绩是 分.(09第3题)下列调查适合普查的是 【 】
(A)调查2009年6月份市场上某品牌饮料的质量
(B)了解中央电视台直播北京奥运会开幕式的全国收
视率情况
(C) 环保部门调查5月份黄河某段水域的水质量情况
(D) 了解全班同学本周末参加社区活动的时间(08第10题)学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6、7、8、9、9、9、9、10、10、10、12,这组数据的众数和中位数分别是 . 【课标要求】
(1) 探索并掌握三角形中位线的性质;(2) 了解两个三角形相似的概念,探索两个三角形相似的条件;
(3) 通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方.4.图形的相似[1]
(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
(2)通过具体实例认识图形的相似。了解对应角分别相等、对应边分别成比例的多边形叫做相似多边形。相似多边形对应边的比称为相似比。
(3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
(4)探索并了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。 *了解相似三角形判定定理的证明。
(5)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。
(6)了解图形的位似,知道利用位似可以将一个图形放大或缩小。
(7)会利用图形的相似解决一些简单的实际问题。
[1] 不要求用(4)、(5)证明其他结论。(10第5题)方程 的根是 【 】
(A) (B)
(C) (D)【课标要求】
(1)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个);(2)理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程.(第6题)【课标要求】(1)能画出平面直角坐标系;在给定的直角坐标系中,
会根据坐标描出点的位置、由点的位置写出它的坐标;
(2)在同一直角坐标系中,感受图形变换后点的坐标的变化. (图形 与 坐标)(修订稿)2.坐标与图形的运动
(1)在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的直线形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
(2)在直角坐标系中,能写出一个已知顶点坐标的直线形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。
(3)在直角坐标系中,探索并了解将一个直线形依次沿两个坐标轴平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。
(4)在直角坐标系中,探索并了解将一个直线形的顶点坐标(有一个顶点为原点、有一个边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的,体会图形顶点坐标的变化。(05第3题)下列各图中,不是中心对称图形的是 ( ) A B C D (05第3题)如图,若将△ABC绕点C顺时针旋转90°后得
到△ A′B′C′,则A点的对应点A′的坐标是( )
A、(-3,-2) B、(2,2)
C、(3,0) D、(2,1) (06第15题)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置.若OB= ,tan∠BOC= ,则点A ′的坐标为 .(06第6题)如图,一块含有30°角的直角三角板ABC,在水平面上绕点C按顺时针方向旋转到AˊBˊC的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为 A. B. C. D.(07第3题)如图,△ABC与△A’B’C’关于直线l 对称,
则∠B的度数为( )
A.30° B.50° C.90° D.100°(第5题)(08第5题)如图,阴影部分组成的图案既是关于x轴成轴对
称的图形又是关于坐标原点O成中心对称的图形.若点A
的坐标是(1,3),则点M和点N的坐标分别是 ( )
A. B.
C. D. (09第5题)如图所示,在平面直角坐标系中,
点A、B的坐标分别为(﹣2,0)和
(2,0).月牙①绕点B顺时针旋转
90°得到月牙②,则点A的对应点A’
的坐标为 【 】
(A)(2,2) (B)(2,4)
(C) (4,2) (D) (1,2)(10年第7题)计算: . (10年第8题)若将三个数 表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .【课标要求】
1.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主);
2.能用有理数估计一个无理数的大致范围. 写出一个比-1大的负有理数是 ,比-1大的负无理数是 . (10年第9题)写出一个 随 的增大而增大的一次函数的解析式: .【课标要求】
(1)结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.;(2)会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况). 能用适当的函数表示法刻画某些实际问题中变量之间的关系.能根据函数解析式以及函数自变量的现实意义确定自变量的取值范围,并会求出具体的函数值.能够借助一次、反比例、二次函数解析式讨论相应函数的基本性质;在给定函数图象的情境中,能结合图象本身进行相应的函数关系分析,在此基础上对变量的变化规律进行初步预测;在具体情境中能根据已知条件确定一次、反比例和二次函数的表达式,并从图象的变化上认识不同函数的性质;会根据公式确定二次函数的顶点、开口方向和对称轴(公式不要求记忆和推导);会利用一次函数图象求一元一次方程、二元一次方程组的近似解,会利用二次函数图象估计一元二次方程解的大致范围(近似解);能利用三种函数表达方式表达实际问题的数学信息,并探索问题中存在的数量关系及变化规律. 课标要求(函数)(08卷第11题)已知反比例函数的图象 经过 点 (m,2) 和
(-2,3), 则 m 的 值 为 .(09卷第12题)点A(2,1)在反比例函数的图像上,当 1﹤x﹤4时,y的取值范围是 . (05卷第9题)图象经过点 的反比例函数的表达式是 . (06卷第7题)函数 中,自变量的取值范围是_____.
(06卷第8题)写出一个图象位于第二、四象限的反比例函数的表达式 .
(07卷第9题)写出一个图象经过点(1,-1)的函数的表达式 .(10年第10题)将一副直角三角板如图放置,使含 角的三角板的短直角边和含 角的三角板的一条直角边重合,则 的度数为 .【课标要求】
(1)知道两直线平行同位角相等,进一步探索平行线的性质;(2)了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.(05第8题)如图,已知AB∥CD,RF分别交AB、CD于点E、F,∠1=70°,则∠2的度数为 .A(07第15题)如图,点P是 的角平
分线上一点,过点P作 交OB于
点C.若 ,
则点P到OA的距离PD等于 .(08第9题)如图,直线l1//l2,
AB⊥CD,∠1=34°,那么∠2的
度数是 .(第9题)(09第8题) 如图,AB//CD,CE平分∠ACD,
若∠1=25°,那么∠2的度数是 .(09第10题)如图,在□ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是 .(10年第11题)如图, 切 于点 , 交 于点 ,点 是 上异于点 的一点,若 ,则 的度数是 .(第11题)课标要求----圆①理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆以及圆与圆的位置关系;②探索圆的性质(主要是垂径定理),了解圆周角与圆心角的关系、直径所对圆周角的特征;③了解三角形的内心和外心;④了解切线的概念,探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;⑤会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积.5.圆[1]
(1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。
(2)探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。
(3)探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补。
(4)知道三角形的内心和外心。
(5)了解直线和圆的位置关系,掌握切线的概念。
(6)探索切线与过切点的半径的关系:切线垂直于过切点的半径;反之,过半径外端且垂直于半径的直线是圆的切线。会用三角尺过圆上一点画圆的切线。
(7)探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等。
(8)了解圆与圆的位置关系。
(9)会计算圆的弧长、扇形的面积。
(10)了解正多边形的概念及正多边形与圆的关系。
[1] 不要求用(2)、(3)、(7)证明其他命题。(05第13题)如图,在⊙O中,弦AB=AC=5cm,BC=8cm,则⊙O的半径等于 cm. (06第10题)如图,点A、B、C是⊙O上的三点,
若∠BOC=56°,则∠A的度数为____________.(07第10题)如图,PA、PA切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P= 度.(07第14题)如图,四边形ABCD为菱形,点B、C在以O为圆心的 上,若 OA=3,∠1= ∠2 ,则扇形OEF的面积为 .(08第14题)如图,小刚制作了一个高12cm,底面直径为10cm的圆锥,这个圆锥的侧面积是 cm2.
(08第12题)如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于 . (第12题)(第11题)(10年第12题)现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率是 .课标要求(概率)1.在具体情境中了解概率的意义,运用列举法(包括列表法、画树状图法)计算简单事件发生的概率;
2.通过试验,获得事件发生的频率;知道大量重复试验时频率可以作为事件发生概率的估计值;
3.通过实例进一步丰富对概率的认识,并能解决一些实际问题.1. 能列出随机现象所有可能的结果,以及指定事件发生的所有可能结果,了解事件发生的概率.
2. 知道通过大量地重复试验,可以用频率来估计概率.(05第20题)如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.(06第18题)一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点 在函数 的图象上的概率是多少?(06年第4题)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15﹪和45﹪,则口袋中白色球的个数很可能是( )
A.6 B.16 C.18 D.24(07第19题)张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1,2,3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.(08第19题)如图,有四张不透明的卡片,除正面写有不同的数字外,其他均相同.将这四张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求出的两张卡片上的数字都是正数的概率.(09年第13题)在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都 是黑球的概率为 .(10年第12题)现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率是 .河南省6年“概率” 试题类型在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近 (精确到0.1);
(2)假如你摸一次,你摸到白球的概率P(白球)= ;
(3)试估算盒子里黑、白两种颜色的球各有多少只? 甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:乙超市:(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由. 【课标要求】
(1)会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型;?(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型; (3)了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装). 通过背景丰富的实例,知道物体的阴影是怎样形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影);能够绘制简单的平面图和立体图,比较清晰地反映视点、视角和盲区;了解生活中中心投影和平行投影的实例,能对两者进行区分. (05第12题)一个正方体的每个面都写有一个汉字,其平面展
开图如图所示,那么在该正方体中,和“超”相对的字是 .(06第5题)由一些大小相同的小正方体组成的几何体的三视图如图所示,那么,组成这个几何体的小正方体有( )
A.6块 B.5块 C.4块 D.3块(07第5题)由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )(08第4题)如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,则其俯视图是 ( )(09第6题)一个几何体由一些大小相同的小正方体组
成,如图是它的主视图和俯视图,那么组成该几何
体所需小正方体的个数最少为【 】
(A)3 (B)4
(C) 5 (D) 6 (2010年第13题)如图是由大小相同的小正方体
组成的简单几何体的主视图和左视图,那么组
成这个几何体的小正方体的个数最多为 .下图是一个立体图形的三视图,请根据视图写出该立体图形的名称并计算该立体图形的体积(结果保留 ).如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是( )A. B.
C. D. (10年第14题)如图,矩形 中,
以 的长为半径的 交
边于点 ,则图中阴影部分的
面积为 .(第14题)(09第15题)如图,在半径为 ,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E 在OB上,点F 在AB上,则阴影部分的面积为
(结果保留 ) .(1)了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角形的条件;了解等边三角形的概念并探索其性质.(2)了解直角三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件.(3)体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形. (4)掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;
(5)会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积. (10年第15题)如图, 中,
点 在 边上,点 是边
上一点(不与点 重合) ,
且 ,则 的
取 值 范 围 是 .(第15题)(09年第14题)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的
端点P、Q也随之移动.若限定点P、Q分
别在AB、AD边上移动,则点A’ 在BC
边上可移动的最大距离为 .(2010年第16题) 16.(8分)已知 , , .将他们组合成 或 的形式,请你从中任选一种进行计算.
先化简,再求值,其中 .【课标要求】
(1)会推导乘法公式: ,了解公式的几何背景,并能进行简单计算; (2)会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数); (3)了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.存在的主要问题是:
①将 抄成 占得比例相当多;
②将 分解成 ;
③分式的化简与解分式方程相混淆,比如,去分母;把
代入原分式方程检验成立等;
④ 约分后写成 的也大有人在;
⑤化简不彻底,如, 不约分而又写成 等;
⑥有的学生把两种全做了,但一种对、一种错,仍被扣了分,主要原因是没有按题的要求做题;还有的同学不是先进行分式的化简,而是先把数代入再进行数的运算,这也不符合题的要求. (05第16题)有一道题“先化简,再求值: 其中 .”
小玲做题时把“ ”错抄成了“ ”,但她的计算结果也是正确的,请你解释这是怎么回事?(07第16题)解方程:(08第16题)先化简,再求值: , 其中 .(09第16题)先化简 ,然后从 中
选取一个你认为合适的数作为 的值代入求值.(10年第16题)已知 , , .将他们组合成 或 的形式,请你从中任选一种进行计算.先化简,再求值,其中 .1.先化简,再求代数式 的值,其中x=4sin45°-2cos60°.2.解不等式组
把解集表示在数轴上,并求出不等式组的整数解.3.已知 是一元二次方程 的一个解,且 ,求 的值.(2010年第17题)如图,四边形 是平行四边形,
和 关于 所在的直线对称, 和
相交于点 ,连结 .
(1)请直接写出图中所有的等腰三角形(不添加字母);
(2)求证: .( 2010年新乡市一摸)把矩形纸片 (如图①)沿对角线 剪开,得到两个三角形,将其中的 沿对角线平移到
的位置(如图②).
求证: 理解证明的必要性,明白几何的演绎体系对数学发展和人类文明的价值 ;了解逆命题的概念,会区分命题的条件(题设)和结论,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立;能够通过合情推理获得数学猜想;理解反例的作用,知道利用反例可以证明一个命题是错误的,初步了解反证法的含义;掌握用综合法证明的格式,能保证证明的过程步步有据;能灵活运用课程标准中规定的基本事实作为证明的依据进行几何推理. 课标要求(图形与证明)(河南05实验区第18题)如图,梯形ABCD中,AD∥BC,AB=DC,P为梯形ABCD外一点,PA、PD分别交线段BC于点E、F,且PA=PD.
(1)写出图中三对你认为全等
的三角形(不再添加辅助线);
(2)选择你在(1)中写出的全
等三角形中的任意一对进行证明. (06第17题)如图,梯形ABCD中,AD ∥BC,AB=AD=DC,E为底边BC的中点,且DE∥AB.试判断△ADE的形状,并给出证明.(07第17题)如图,点E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA的中点.
求证:△BEF≌△DGH.(08第18题)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
小亮是个爱动脑筋的同学,他通过对图①的分析,证明△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.(09第17题)如图所示, ∠BAC=∠ABD,AC=BD,
点O是AD、BC的交点,点E是AB的中点.
试判断OE和AB的位置关系,并给出证明.河南省6年“简单几何证明” 试题类型(2010新乡市调研试卷)在“汽车总动员车展”期间,汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.请根据统计图提供的信息,解答下列问题:
(1)将两幅统计图分别补充完整;
(2)通过计算说明,对于C、D两种型号的轿车,哪一种销售的成交率较高?
(3)现将已售出A、B、C、D四种型号轿车逐一编卡(号码写在卡片上,一车一卡,每张卡片除号码不同外其它都一样),将所有卡片背面朝上放在一起,对已售出轿车进行抽奖.从中随机抽取一张卡片,求抽到A型号轿车的概率.课标要求(统计) (1)从事收集、整理、描述和分析数据的活动,能处理统计数据。(2)通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果。(3)会用扇形统计图表示数据。(4)会计算加权平均数;能选择合适的统计量表示数据的集中程度。(5)探索如何表示一组数据的离散程度,会计算极差和方差。(6)理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题。(7)体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差。(8)根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流。(9)能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法。(10)认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题。(06年第19题)某公司员工的月工资情况统计如下表:
(1)分别计算该公司员工月工资的平均数、中位数和众数;
(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由;
(3)请画出一种你认为合适的统计图来表示上面表格中的数据.(07第18题)下图是根据2006年某省各类学校在校生人数情况制作的扇形统计图和不完整的条形统计图.
已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:
(1)2006年该省各类学校在校生总人数约多少万人?(精确到1万人)
(2)补全条形统计图;
(3)请你写出一条合理化建议.(08第17题)图①、图②反映是某综合商场今年1-5月份的商品销售额统计情况.观察图①和图②,解答下面问题:
(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370万元,请你根据这一信息补全图①,并写出两条由上两图获得的信息;
(2)商场服装部5月份的销售额是多少万元?
(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?(09年第18题)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:
(1) ______,
____;
(2)在扇形统计图中,D组所占圆心角的度数为______;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?阅读对人成长的影响是很大的.希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:
(1)这次随机调查了 名学生;
(2)把统计表和条形统计图补充完整;
(3)随机调查一名学生,估计恰好是最喜欢文学类图书的概率是 .为了了解某校2000 名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.
(1) 指出这个问题中的总体;
(2) 求竞赛成绩在79.5~89.5这一小组的频率;
(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.某校高中一年级组建篮球队,对甲、乙两名备选同学进行定位投篮测试,每次投10个球,共投10次.甲、乙两名同学测试情况如图所示:(2)如果你是高一学生会文体委员,会选择哪名同学进入篮球队?请说明理由.(1)根据下图所提供的信息填写下表:1.了解等腰三角形的有关概念,掌握等腰三角形的性质和判定; 2.了解直角三角形的概念,掌握直角三角形的性质和判定;
3.会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。4.掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。5.掌握平行四边形的有关性质和四边形是平行四边形的条件。6.掌握平行四边形、矩形、菱形、正方形的有关性质和判定;
7.了解等腰梯形的有关性质和四边形是等腰梯形的条件。课标要求(三角形和四边形 )(09第21题)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=________度时,四边
形EDBC是等腰梯形,此时AD的长
为_________;
②当α=________度时,四边
形EDBC是直角梯形,此时AD的长
为_________;
(2)当α=90°时,判断四边形
EDBC是否为菱形,并说明理由.探究性几何证明题: 能够通过合情推理获得数学猜想.
理解反例的作用,知道利用反例可以证明一个命题是错误的,初步了解反证法的含义.
掌握用综合法证明的格式,能保证证明的过程步步有据.能灵活运用课程标准中规定的基本事实作为证明的依据进行几何推理.
(06年20题)如图,线段AB=4,点O是线段AB上一点,C,D分别是线段OA,OB的中点,小明据此很轻松地求得CD=2.他在反思过程中突发奇想:若点O运动到AB的延长线上或点O在AB所在的直线外时,原有的结论“CD=2”是否仍然成立?请帮小明画出图形并说明理由.(08第18题)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
小亮是个爱动脑筋的同学,他通过对图①的分析,证明△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.(09第21题)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=________度时,四边
形EDBC是等腰梯形,此时AD的长
为_________;
②当α=________度时,四边
形EDBC是直角梯形,此时AD的长
为_________;
(2)当α=90°时,判断四边形
EDBC是否为菱形,并说明理由.(10第19题)如图,在梯形 中, , 是 的中点, , ,点 是边 上一动点,设 的长为 .
(1)当 的值为 时,以点 为顶点的四边形为直角梯形.
(2)当 的值为 时,以点 为顶点的四边形为平行四边形.
(3)点 在 边上运动的过程中,以点 为顶点的四边形能否构成菱形?试说明理由.河南省6年“探究性几何” 试题类型(2010年20题)为鼓励学生参加体育锻炼,学校计划拿出不超过1 600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案? 能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型;
能够列出方程(一元一次、二次)或方程(二元一次)组并会求得其解,有意识地根据所得解在现实世界的实际意义检验结果是否合理,从而建立有效的数学模型;
通过分析具体问题中的数量关系,能够列出一元一次不等式或不等式组,解决简单的问题; 能用一次函数解决实际问题;能用反比例函数解决某些实际问题;
会根据公式确定图象的顶点坐标、开口方向和对称轴(公式不要求记忆和推导),并能解决简单实际问题; ?课标要求--- (数与代数模型)实际应用试题(05第22题)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.
经过预算,本次购买机器所耗资金不能超过34万元.
(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?不等式(组)(06第21题)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).
(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;
(2)试比较顾客到哪家超市购物更优惠?说明你的理由.一次函数、不等式(07第22题)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表: (注:获利=售价-进价)
(1)该商场购进A、B两种商品各多少件;
(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?方程组、不等式(08第22题)某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.(1) 如果他们计划用300元购买奖品,那么能卖这两种笔记本各多少本?
(2) 两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B
种笔记本数量的 ,但又不少于B种笔记本数量的 ,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
① 请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
② 请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?一次方程、不等式组、一次函数(09年第19题)暑假期间,小明和父母一起开车到距家200千米的 景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.一次函数模型不等式组河南省6年“数与代数模型”实际应用试题类型 《数学课程标准》(修订稿)1.会利用待定系数法确定一次函数的解析表达式.明确提出了待定系数法求解析式,而原来没有明确提出.2.体会一次函数与二元一次方程(新增)、二元一次方程组的关系.3.知道给定不共线三点的坐标可以确定一个二次函数(新增选学内容).4.会用配方法将数字系数的二次函数的表达式化为
的形式(明确提出). (课标实验稿要求)
(1)能根据一次函数的图象求二元一次方程组的近似解;
(2)会利用二次函数的图象求一元二次方程的近似解.如图,一次函数 与反比例函数 的图象交于 , 两点.
(1)求反比例函数和一次函数的解析式;
(2)求直线 与 轴的交点 的坐标及△ 的面积;
(3)根据图象直接写出
关于 的方程
的解及不等式
的解集. 此题为新乡市上学期八年级期末试题(10年第22题) (1)操作发现
如图,矩形 中, 是 的中点,将 沿 折叠后得到 ,且点 在矩形 内部.小明将 延长交 于点 ,认为 ,你同意吗?说明理由.
(2)问题解决
保持(1)中的条件不变,
若 ,求 的值.
(3)类比探究
保持(1)中的条件不变,
若 ,求 的值.(2010年新乡市调研卷) 已知△ABC和△ FDE是顶角相等的两个等腰三角形,AB=AC,FD=FE,把点F放到与A点重合,E在线段BC的延长线上. (1)如图1,若∠BAC=∠DFE=60°,此时∠DCE= ;
(2)如图2,若∠BAC=∠DFE=95° ,此时∠DCE = ;
(3)若∠BAC=∠DFE=n°,将△FDE沿线段AC向下滑动,如图3所示,试猜想此时∠DCE的度数,并写出详细求解过程.课外兴趣小组活动时,许老师出示了如下问题: 如图1,己知四边形ABCD中,AC平分∠DAB, ∠DAB=60°, ∠B与∠D互补, ,求证: .小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手,添加条件:“∠B=∠D”, 如图2,
可证 (请你完成此证明);(2)解决原来问题:受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F(请你补全证明).数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证 ,所以AE=EF .
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.6年的压轴题 (06第23题) 如图,在平面直角坐标系中,直线 分别交x轴,y轴于A,B两点.
(1)求A,B两点的坐标;
(2)设P是直线BA上一动点(点P与点A不重合),⊙P终和x轴相切,和直线AB相交于C,D两点(点C的横坐标小于点D的横坐标).设P点的横坐标为m,试用含有m的代数式表示点C的横坐标;
(3)在(2)的条件下,若点C在线段AB上,求m为何值时,△BOC为等腰三角形.(07第23题)如图,对称轴为直线 的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当四边形OEAF的面积为24时,请判断四边形OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.(08第23题)如图,直线 和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).
(1)试说明△ABC是等腰三角形;
(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.
① 求S与t的函数关系式;
② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;
③在运动过程中,当△MON为直角三角形时,
求t的值.(09年第23题) 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y= 过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,
同时点Q从点C出发,沿线段CD向终点D运动.
速度均为每秒1个单位长度,运动时间为t秒.
过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于
点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,
判断有几个时刻使得△CEQ是等腰
三角形?请直接写出相应的t值. 压轴题: 河南省05-10六年压轴题分析联系方式:15637358525
办公电话:0373——2039016
电子邮箱:xxjys825@sohu.com
xxjyswei@yahoo.com.cn
《全日制义务教育数学课程标准(实验稿)》
第三学段(7~9年级) 一、数与代数 在本学段中,学生将学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力。 在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景;应避免繁琐的运算。 (一)具体目标 1.数与式 (1)有理数 ①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。 ②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。 ③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。 ④理解有理数的运算律,并能运用运算律简化运算。 ⑤能运用有理数的运算解决简单的问题。 ⑥能对含有较大数字的信息作出合理的解释和推断。[参见例1] (2)实数 ①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。 ②了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。 ③了解无理数和实数的概念,知道实数与数轴上的点一一对应。 ④能用有理数估计一个无理数的大致范围。[参见例2] ⑤了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。 ⑥了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。 (3)代数式 ①在现实情境中进一步理解用字母表示数的意义。 ②能分析简单问题的数量关系,并用代数式表示。[参见例3与例4] ③能解释一些简单代数式的实际背景或几何意义。[参见例5] ④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。 (4)整式与分式 ①了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。 ②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。 ③会推导乘法公式:?(a+b)(a-b)=a2-b2;(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算。? ④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。 ⑤了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。[参见例6] 2.方程与不等式 (1)方程与方程组 ①能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。 ②经历用观察、画图或计算器等手段估计方程解的过程。[参见例7] ③会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个) 。 ④理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。 ⑤能根据具体问题的实际意义,检验结果是否合理。 (2)不等式与不等式组 ①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。 ②会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。 ③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。 3.函数 (1)探索具体问题中的数量关系和变化规律[参见例8] (2)函数 ①通过简单实例,了解常量、变量的意义。 ②能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 ③能结合图像对简单实际问题中的函数关系进行分析。[参见例9] ④能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。 ⑤能用适当的函数表示法刻画某些实际问题中变量之间的关系。[参见例10] ⑥结合对函数关系的分析,尝试对变量的变化规律进行初步预测。[参见例11] (3)一次函数 ①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。 ②会画一次?函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况。 ③理解正比例函数。 ④能根据一次函数的图象求二元一次方程组的近似解。 ⑤能用一次函数解决实际问题。 (4)反比例函数 ①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。 ②能画出反比例函数的图象,根据?图象和解析表达式y=kx(k≠0)探索并理解其性质(k>0或k<0时,图象的变化)。 ③能用反比例函数解决某些实际问题。 (5)二次函数 ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。 ④会利用二次函数的图象求一元二次方程的近似解。
二、空间与图形 在本学段中,学生将探索基本图形(直线形、圆)的基本性质及其相互关系,进一步丰富对空间图形的认识和感受,学习平移、旋转、对称的基本性质,欣赏并体验变换在现实生活中的广泛应用,学习运用坐标系确定物体位置的方法,发展空间观念。 推理与论证的学习从以下几个方面展开:在探索图形性质、与他人合作交流等活动过程中,发展合情推理,进一步学习有条理地思考与表达;在积累了一定的活动经验与掌握了一定的图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。 在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;应注重对证明本身的理解,而不追求证明的数量和技巧。证明的要求控制在《标准》所规定的范围内。 (一)具体目标 1.图形的认识 (1)点、线、面 通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。 (2)角 ①通过丰富的实例,进一步认识角。 ②会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。 ③了解角平分线及其性质【1】 (3)相交线与平行线 注【1】角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角的平分线上。 ①了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。 ②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。 ③知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。 ④了解线段垂直平分线及其性质【1】。 ⑤知道两直线平行同位角相等,进一步探索平行线的性质。 ⑥知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线。 ⑦体会两条平行线之间距离的意义,会度量两条平行线之间的距离。 (4)三角形 ①了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性。 ②探索并掌握三角形中位线的性质。 ③了解全等三角形的概念,探索并掌握两个三角形全等的条件。 ④了解等腰三角形的有关概念,探索并掌握等腰三角形的性质【2】和一个三角形是等腰三角形的条件[3];了解等边三角形的概念并探索其性质。 ⑤了解直角三角形的概念,探索并掌握直角三角形的性质[4]和一个三角形是直角三角形的条件[5] ⑥体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 (5)四边形 ①探索并了解多边形的内角和与外角和公式,了解正多边形的概念。 ②掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。 注 【1】线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线上。 【2】等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一。 [3]有两个角相等的三角形是等腰三角形。 [4]直角三角形的两锐角互余,斜边上的中线等于斜边一半。 [5]有两个角互余的三角形是直角三角形。 ③探索并掌握平行四边形的有关性质[1]和四边形是平行四边形的条件[2]。 ④探索并掌握矩形、菱形、正方形的有关性质[3]和四边形是矩形、菱形、正方形的条件[4]。 ⑤探索并了解等腰梯形的有关性质[5]和四边形是等腰梯形的条件。[6] ⑥探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的矩形木 重心)。 ⑦通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。 (6)圆 ①理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆以及圆与圆的位置关系。 ②探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。 ③了解三角形的内心和外心。 ④了解切线的概念,探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。 ⑤会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。 (7)尺规作图 ①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。 ②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。 ③探索如何过一点、两点和不在同一直线上的三点作圆。 ④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。 (8)视图与投影 ①会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。 ②了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。 ③了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。 注: [1]平行四边形的对边相等、对角相等、对角线互相平分。 [2]一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形。 [3]矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直平分。 [4]三个角是直角的四边形,或对角线相等的平行四边形是矩形;四边相等的四边形,或对角线互相垂直的平行四边形是菱形。 [5]等腰梯形同一底上的两底角相等,两条对角线相等。 [6]同一底上的两底角相等的梯形是等腰梯形。 ④观察与现实生活有关的图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。 ⑤通过背景丰富的实例,知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或人的身影)。 ⑥了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。 ⑦通过实例了解中心投影和平行投影。 2.图形与变换 (1)图形的轴对称 ①通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。 ②能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。[参见例1] ③探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质。 ④欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计。 (2)图形的平移 ①通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质。 ②能按要求作出简单平面图形平移后的图形。 ③利用平移进行图案设计,认识和欣赏平移在现实生活中的应用。 (3)图形的旋转 ①通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。 ②了解平行四边形、圆是中心对称图形。 ③能够按要求作出简单平面图形旋转后的图形。 ④欣赏旋转在现实生活中的应用。 ⑤探索图形之间的变换关系(轴对称、平移、旋转及其组合)。[参见例2和例3] ⑥灵活运用轴对称、平移和旋转的组合进行图案设计。 (4)图形的相似 ①了解比例的基本性质,了解线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割。 ②通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。 ③了解两个三角形相似的概念,探索两个三角形相似的条件。 ④了解图形的位似,能够利用位似将一个图形放大或缩小。 ⑤通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。 ⑥通过实例认识锐角三角函数(sin?A?,cos?A?,tan?A?),知道30°,45°,60°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角。 ⑦运用三角函数解决与直角三角形有关的简单实际问题。 3.图形与坐标 (1)认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。[参见例4] (2)能在方格纸上建立适当的直角坐标系,描述物体的位置。[参见例5] (3)在同一直角坐标系中,感受图形变换后点的坐标的变化。[参见例6] (4)灵活运用不同的方式确定物体的位置。[参见例7] 4.图形与证明 (1)了解证明的含义 ①理解证明的必要性。 ②通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论。 ③结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立。 ④通过具体的例子理解反例的作用,知道利用反例可以证明一个命题是错误的。 ⑤通过实例,体会反证法的含义。 ⑥掌握用综合法证明的格式,体会证明的过程要步步有据。 (2)掌握以下基本事实,作为证明的依据 ①一条直线截两条平行直线所得的同位角相等。 ②两条直线被第三条直线所截,若同位角相等,那么这两条直线平行。 ③若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等。 ④全等三角形的对应边、对应角分别相等。 (3)利用(2)中的基本事实证明下列命题[1]1 ①平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行)。 ②三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角)。 ③直角三角形全等的判定定理。 ④角平分线性质定理及逆定理; 三角形的三条角平分线交于一点(内心)。 ⑤垂直平分线性质定理及逆定理; 三角形的三边的垂直平分线交于一点(外心)。 ⑥三角形中位线定理。 ⑦等腰三角形、等边三角形、直角三角形的性质和判定定理。 ⑧平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。 (4)通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值 三、统计与概率 在本学段中,学生将体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的方法,进一步体会概率的意义,能计算简单事件发生的概率。 在教学中,应注重所学内容与日常生活、自然、社会和科学技术领域的联系,使学生体会统计与概率对制定决策的重要作用;应注重使学生从事数据处理的全过程,根据统计结果作出合理的判断;应注重使学生在具体情境中体会概率的意义;应加强统计与概率之间的联系;应避免将这部分内容的学习变成数字运算的练习,对有关术语不要求进行严格表述。 (一)具体目标 1.统计 (1)从事收集、整理、描述和分析数据的活动,能用计算器处理较为复杂的统计数据。 (2)通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果。[参见例1] (3)会用扇形统计图表示数据。 (4)在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表示数据的集中程度。 (5)探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度。[参见例2] (6)通过实例,理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题。 (7)通过实例,体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差。 (8)根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流。 (9)能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法。 (10)认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题。[参见例3] 2.概率 (1)在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。[参见例4和例5] (2)通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值。[参见例6] (3)通过实例进一步丰富对概率的认识,并能解决一些实际问题。[参见例7] 四、课题学习 在本学段中,学生将探讨一些具有挑战性的研究课题,发展应用数学知识解决问题的意识和能力;同时,进一步加深对相关数学知识的理解,认识数学知识之间的联系。 在前两个学段的基础上,教学时应引导学生结合生活经验提出课题、积极地思考所面临的课题、清楚地表达自己的观点并能够解决一些问题。 (一)具体目标 1.经历"问题情境-建立模型-求解-解释与应用"的基本过程。 2.体验数学知识之间的内在联系,初步形成对数学整体性的认识。 3.获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识。 4.通过获得成功的体验和克服困难的经历,增进应用数学的自信心。
?2005年河南省高级中等学校招生学业考试试卷
数 学(实验区)
注意事项:
1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上.
2.答题前将密封线内的项目填写清楚.
题号
一
二
三
总分
16
17
18
19
20
21
22
23
分数
得分
评卷人
一、选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的,将正
确答案的代号字母填入题后括号内.
1.计算的结果是 ( )
A. B. 9 C. D.6
2.今年2月份某市一天的最高气温为,最低气温为,那么这一天的最高气温比最低气温高 ( )
A. B. C. D.
3.下列各图中,不是中心对称图形的是 ( )
A B C D
4.2004年全年国内生产总值按可比价格计算,比上年增长9.5%,达到136515亿元.136515亿元用科学记数法表示(保留4个有效数字)为 ( )
A.元 B.元
C.元 D.元
5.某校八年级同学到距学校6千米的郊外春游,一
部分同学步行,另一部分同学骑自行车,沿相同路线前往.
如图,、分别表示步行和骑车的同学前往目的地所走
的路程(千米)与所用时间(分钟)之间的函数图象,
则以下判断错误的是 ( )
A.骑车的同学比步行的同学晚出发30分钟
B.步行的速度是6千米/时
C.骑车的同学从出发到追上步行的同学用了20分钟
D.骑车的同学和步行的同学同时到达目的地
6.如图,若将绕点顺时针旋转后得到
,则点的对应点的坐标是 ( )
A. B.
C. D.
得分
评卷人
二、填空题(每小题3分,共27分)
7.某种洗衣机的包装箱外形是长方体,其高为1.2米,体积
为1.2立方米,底面是正方形,则该包装箱的底面边长为 米.
8.如图,已知,分别交、于点、,
,则的度数是 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
9.图象经过点的反比例函数的表达式是 .
10.将连续的自然数1至36按右图的方式排成一个正方形阵列,
用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为
,用含有的代数式表示这9个数的和为 .
11.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张
和小李两人中新手是 .
12.一个正方体的每个面都写有一个汉字,其平面展开图如
图所示,那么在该正方体中,和“超”相对的字是 .
13.如图,在中,弦cm,cm,
则的半径等于 cm.
14.某单位举行歌咏比赛,分两场举行,第一场8名参赛选
手的平均成绩为88分,第二场4名参赛选手的平均成绩为94分,
那么这12名选手的平均成绩是 分.
15.如图,半圆和半圆均与轴相切于点,其直径
、均和轴垂直,以为顶点的两条抛物线分别经过点
、和点、,则图中阴影部分的面积是 .
三、解答题(本大题共8个小题,满分75分)
得分
评卷人
16.(8分)有一道题“先化简,再求值:
其中.”小玲做题时把“”错抄成了“”,但她的计算结果也是正确的,请你解释这是怎么回事?
得分
评卷人
17.(9分)下表数据来源于国家统计局《国民经济和社会发展统计公报》.
2001-2004年国内汽车年产量统计表
2001年
2002年
2003年
2004年
汽车(万辆)
233
325.1
444.39
507.41
其中轿车(万辆)
70.4
109.2
202.01
231.40
根据上表将下面的统计图补充完整;
2001-2004年国内汽车年产量统计图
(2)请你写出三条从统计图中获得的信息;
(3)根据2004年汽车年产量和目前销售情况,有人预测2006年国内汽车年产量应上升至650万辆.根据这一预测,假设这两年汽车年产量平均年增长率为,则可列出方程 .
得分
评卷人
18.(9分)如图,梯形中,,为梯形外一点,、分别交线段于点、,且.
写出图中三对你认为全等的三角形(不再添加辅助线);
选择你在(1)中写出的全等三角形中的任意一对进行证明.
得分
评卷人
19.(9分)如图,某风景区的湖心岛有一凉亭,其正东方向有一棵大树,小明想测量、之间的距离,他从湖边的处测得在北偏西方向上,测得在北偏东方向上,且量得、之间的距离为100米,根据上述测量结果,请你帮小明计算、之间的距离是多少?(结果精确到1米.参考数据:)
得分
评卷人
20.(9分)如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.
得分
评卷人
21.(10分)如图,正方形的边长为4cm,点是边上不与点、重合的任意一点,连结,过点作交于点,设的长为xcm,的长为cm.
求点在上运动的过程中的最大值;
当cm时,求的值.
得分
评卷人
22.(10分)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲
乙
价格(万元/台)
7
5
每台日产量(个)
100
60
按该公司要求可以有几种购买方案?
若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应
选择哪种购买方案?
得分
评卷人
23.(11分)如图1,中,,
cm,矩形的长和宽分别为8cm和2cm,点和点重合,和在一条直线上.令不动,矩形沿所在直线向右以每秒1cm的速度移动(如图2),直到点与点重合为止.设移动秒后,矩形与重叠部分的面积为.求与之间的函数关系式.
2006年河南省高级中等学校招生学业考试试卷
数 学(实验区)
考生注意:
1.本试卷共8页,三大题,满分120分,考试时间100分钟.用钢笔或圆珠笔直接答在试卷上.
2.答卷前将密封线内的项目填写清楚.
题号
一
二
三
总分
16
17
18
19
20
21
22
23
分数
一、选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.的倒数是( )
A. B. C. D.
2.2005年末我国外汇储备达到亿美元,亿用科学记数法表示(保留3个有效数字)是( )
A. B. C. D.
3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在和,则口袋中白色球的个数很可能是( )
A. B. C. D.
4.如图,一次函数的图象经过,两点,则的解集是( )
A. B.
C. D.
5.由一些大小相同的小正方体组成的几何体的三视图如图所示,那么,组成这个几何体的小正方体有( )
A.块 B.块 C.块 D.块
6.如图,一块含有角的直角三角板,在水平桌面上绕点按顺时针方向旋转到的位置.若的长为,那么顶点从开始到结束所经过的路径长为( )
A. B. C. D.
二、填空题(每小题3分,共27分)
7.函数中,自变量的取值范围是____________.
8.写出一个图象位于第二、四象限的反比例函数的表达式____________.
9.在“手拉手活动”中,小明为捐助某贫困山区的一名同学,现已存款元,他计划今后每月存款元,个月后存款总数是____________元.
10.如图,点,,是上的三点,若,则的度数为____________.
11.如图,,是两个村庄,分别位于一个湖的南、北两端和的正东方向上,且位于的北偏东方向上,,则____________.
12.已知二次函数的对称轴和轴相交于点,则的值为____________.
13.要拼出和图1中的菱形相似的较长对角线为的大菱形(如图2所示),需要图1中的菱形的个数为____________.
14.如图,在中,,,是边的中点,是边上一动点,则的最小值是____________.
15.如图,把矩形纸片放入平面直角坐标系中,使,分别落在轴,轴上,连结,将纸片沿折叠,使点落在点的位置.若,,则点的坐标为____________.
三、解答题(本大题共8个小题,满分75分)
16.(8分)计算:.
17.(9分)如图,梯形中,,,为底边的中点,且.试判断的形状,并给出证明.
18.(9分)一枚均匀的正方体骰子,六个面分别标有数字,,,,,,连续抛掷两次,朝上的数字分别是,.若把,作为点的横、纵坐标,那么点在函数的图象上的概率是多少?
19.(9分)某公司员工的月工资情况统计如下表:
员工人数
月工资(元)
(1)分别计算该公司员工月工资的平均数、中位数和众数;
(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由;
(3)请画出一种你认为合适的统计图来表示上面表格中的数据.
20.(9分)如图,线段,点是线段上一点,,分别是线段,的中点,小明据此很轻松地求得.他在反思过程中突发奇想:若点运动到的延长线上或点在所在的直线外时,原有的结论“”是否仍然成立?请帮小明画出图形并说明理由.
21.(10分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出元之后,超出部分按原价折优惠;在乙超市累计购买商品超出元之后,超出部分按原价折优惠.设顾客预计累计购物元().
(1)请用含的代数式分别表示顾客在两家超市购物所付的费用;
(2)试比较顾客到哪家超市购物更优惠?说明你的理由.
22.(10分)如图,在中,,,.是边上一点,直线于,交于,交直线于.设.
(1)当取何值时,四边形是菱形?请说明理由;
(2)当取何值时,四边形的面积等于?
23.(11分)如图,在平面直角坐标系中,直线分别交轴,轴于,两点.
(1)求,两点的坐标;
(2)设是直线上一动点(点与点不重合),始终和轴相切,和直线相交于,两点(点的横坐标小于点的横坐标).设点的横坐标为,试用含有的代数式表示点的横坐标;
(3)在(2)的条件下,若点在线段上,求为何值时,为等腰三角形.
2007年河南省高级中等学校招生学业考试试卷
数 学(实验区)
注意事项:
本试卷共8页,三大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上.
答卷前将密封线内的项目填写清楚.
题号
一
二
三
总分
16
17
18
19
20
21
22
23
分数
一、选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.计算的结果是( )
A. B.1 C. D.3
2.使分式有意义的的取值范围是( )
A. B. C. D.
3.如图,与关于直线对称,则的度数为( )
A. B. C. D.
4.为了了解某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨)
4
5
6
9
户数
3
4
2
1
则关于这10户家庭的月用水量,下列说法错误的是( )
A.中位数是5吨 B.众数是5吨
C.极差是3吨 D.平均数是5.3吨
5.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )
6.二次函数的图象可能是( )
二、填空题(每小题3分,共27分)
7. 的相反数是 .
8.计算: .
9.写出一个图象经过点的函数的表达式 .
10.如图,切于点,点是上一点,且,则
度.
11.如图,在直角梯形中,
,则 cm.
12.已知为整数,且满足,则 .
13.将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第个图形中,其有 个六边形.
14.如图,四边形为菱形,点在以为圆心的上,若,则扇形的面积为 .
15.如图,点是的角平分线上一点,过点作交于点.若,则点到的距离等于 .
三、解答题(本大题8个小题,共75分)
16.(8分)解方程:.
17.(9分)如图,点分别是的边的中点.
求证:.
18.(9分)下图是根据2006年某省各类学校在校生人数情况制作的扇形统计图和不完整的条形统计图.
已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:
(1)2006年该省各类学校在校生总人数约多少万人?(精确到1万人)
(2)补全条形统计图;
(3)请你写出一条合理化建议.
19.(9分)张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1,2,3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平.
20.(9分)如图,是边长为1的正方形,其中的圆心依次是点.
(1)求点沿三条圆弧运动到点所经过的路线长;
(2)判断直线与的位置关系,并说明理由.
21.(10分)请你画出一个以为底边的等腰,使底边上的高.
(1)求和的值;
(2)在你所画的等腰中,假设底边米,求腰上的高.
22.(10)某商场用36万元购进两种商品,销售完后共获利6万元,其进价和售价如下表:
A
B
进价(元/件)
1200
1000
售价(元/件)
1380
1200
(注:获利售价进价)
(1)该商场购进两种商品各多少件;
(2)商场第二次以原进价购进两种商品.购进种商品的件数不变,而购进种商品的件数是第一次的2倍,种商品按原售价出售,而种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?
23.(11分)如图,对称轴为直线的抛物线经过点和.
(1)求抛物线解析式及顶点坐标;
(2)设点是抛物线上一动点,且位于第四象限,四边形OEAF是以为对角线的平行四边形.求的面积与之间的函数关系式,并写出自变量的取值范围;
①当的面积为24时,请判断是否为菱形?
②是否存在点,使为正方形?若存在,求出点的坐标;若不存在,请说明理由.
2008年河南省初中毕业生学业暨高级中等学校招生考试试卷
数 学
注意事项:
1. 本试卷共8页,三大题,满分120分,考试时间100分钟. 请用钢笔或圆珠笔直接答在试卷上.
2. 答题前将密封线内的项目填写清楚.
题号
一
二
三
总分
16
17
18
19
20
21
22
23
分数
得分
评卷人
一、选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.-的绝对值是 【 】
A. B.- C.7 D.-7
2.为支援四川地震灾区,中央电视台于5月18日晚举办了《爱的奉献》赈灾晚会,晚会现场捐款达1514000000元.1514000000用科学计数法表示正确的是 【 】
A. B. C. D.
3.不等式的解集在数轴上表示正确的是 【 】
4.如图①是一些大小相同的小正方体组成的几何体,其主视图如图②所示,再饿其俯视图是 【 】
5.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是 【 】
A.
B.
C.
D.
6.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是 【 】
A.邻边不等的矩形 B.等腰梯形
C.有一个角是锐角的菱形 D.正方形
得分
评卷人
二、填空题(每小题3分,共27分)
7.比-3小2的数是_______________.
8.图象经过(1,2)的正比例函数的表达式为 .
9.如图直线l1//l2,AB⊥CD,∠1=34°,那么∠2的度数是 .
10.学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6、7、8、9、9、9、9、10、10、10、12,这组数据的众数和中位数分别是 .
11.已知反比例函数的图象经过点(m,2)和(-2,3)则m的值为 .
12.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于 .
13.某商店一套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为 元.
14.如图,小刚制作了一个高12cm,底面直径为10cm的圆锥,这个圆锥的侧面积是 cm2.
15.如图,在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分面积为 .
三、解答题(本大题共8个小题, 满分75分)
得分
评卷人
16.(8分)先化简,再求值:
,其中.
得分
评卷人
17.(9分)图①、图②反映是某综合商场今年1-5月份的商品销售额统计情况.观察图①和图②,解答下面问题:
(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370万元,请你根据这一信息补全图①,并写出两条由上两图获得的信息;
(2)商场服装部5月份的销售额是多少万元?
(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?
得分
评卷人
18.(9分)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接
BQ、CP,则BQ=CP.”
小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.
得分
评卷人
19.(9分)如图,有四张不透明的卡片,除正面写有不同的数字外,其他均相同.将这四张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字.试用列表或画树状图的方法,求出的两张卡片上的数字都是正数的概率.
得分
评卷人
20.(9分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,
∠A=45°,∠B=37°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据:,sin37°≈0.60,cos37°≈0.80)
得分
评卷人
21.(9分)如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形.求点C的坐标.
得分
评卷人
22.(10分)某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本. (1) 如果他们计划用300元购买奖品,那么能卖这两种笔记本各多少本?
(2) 两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B
种笔记本数量的,但又不少于B种笔记本数量的,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.
① 请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;
② 请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?
得分
评卷人
23.(12分)如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0).
(1)试说明△ABC是等腰三角形;
(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.
① 求S与t的函数关系式;
② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;
③在运动过程中,当△MON为直角三角形时,求t的值.
2009年河南省初中学业水平暨高级中等学校招生考试试卷
数 学
注意事项:
1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上.
2.答卷前将密封线内的项目填写清楚.
题号
一
二
三
总分
1~6
7~15
16
17
18
19
20
21
22
23
分数
得分
评卷人
选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.﹣5的相反数是 【 】
(A) (B)﹣ (C) ﹣5 (D) 5
2.不等式﹣2x<4的解集是 【 】
(A)x>﹣2 (B)x<﹣2 (C) x>2 (D) x<2
3.下列调查适合普查的是 【 】
(A)调查2009年6月份市场上某品牌饮料的质量
(B)了解中央电视台直播北京奥运会开幕式的全国收视率情况
(C) 环保部门调查5月份黄河某段水域的水质量情况
(D)了解全班同学本周末参加社区活动的时间
4.方程=x的解是 【 】
(A)x=1 (B)x=0
(C) =1 x2=0 (D) =﹣1 =0
5.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)
和(2,0).月牙①绕点B顺时针旋转900得到月牙②,则点A的对应
点A’的坐标为 【 】
(A)(2,2) (B)(2,4)
(C)(4,2) (D)(1,2)
6.一个几何体由一些大小相同的小正方体组成,
如图是它的主视图和俯视图,那么组成该几何
体所需小正方体的个数最少为 【 】
(A)3 (B) 4 (C) 5 (D)6
得分
评卷人
二、填空题(每小题3分,共27分)
7.16的平方根是 .
8.如图,AB//CD,CE平分∠ACD,若∠1=250,那么∠2的度数是 .
9.下图是一个简单的运算程序.若输入X的值为﹣2,则输出的数值为 .
10.如图,在ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是 .
11.如图,AB为半圆O的直径,延长AB到点P,使
BP=AB,PC切半圆O于点C,点D是上和点
C不重合的一点,则的度数为 .
12.点A(2,1)在反比例函数的图像上,当1﹤x﹤4时,y的取值范围是 .
13.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为 .
14.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,
折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点
A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定
点P、Q分别在AB、AD边上移动,则点A’在BC边上可移
动的最大距离为 .
15.如图,在半径为,圆心角等于450的扇形AOB内部
作一个正方形CDEF,使点C在OA上,点D、E在OB上,
点F在上,则阴影部分的面积为(结果保留) .
三、解答题(本大题8个小题,共75分)
得分
评卷人
16.(8分)先化简,然后从中选取一个你认为合适的数作为x的值代入求值.
得分
评卷人
17.(9分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.
得分
评卷人
18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.
组别
锻炼时间(时/周)
频数
A
1.5≤t<3
l
B
3≤t<4.5
2
C
4.5≤t<6
D
6≤t<7.5
20
E
7.5≤t<9
15
F
t≥9
根据上述信息解答下列问题:
(1)______,_________;
(2)在扇形统计图中,D组所占圆心角的度数为_____________;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有
多少名?
得分
评卷人
l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
得分
评卷人
20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?
(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)
得分
评卷人
21. (10分)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;
②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
得分
评卷人
22. (10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:
(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?
(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.
如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?
得分
评卷人
23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD
向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
请直接写出相应的t值.
2010年河南省初中学业水平暨高级中等学校招生考试试卷
数 学
注意事项:
1.本试卷分试题卷和答题卡两部分.试题卷共4页,三个大题,满分120分,考试时间100分钟.
2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.
3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.
参考公式:二次函数图象的顶点坐标为.
一、选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的.
1.的相反数是
(A) (B) (C) (D)
2.我省2009年全年生产总值比2008年增长10.7%,达到约19 367亿元.19 367亿元用科学记数法表示为
(A)元 (B)元
(C)元 (D)元
3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:.则这组数据的众数和极差分别是
(A)1.85和0.21 (B)2.31和0.46 (C)1.85和0.60 (D)2.31和0.60
4.如图,中,分别是的中点,则下列结论:;;.其中正确的有
(A)3个 (B)2个 (C)1个 (D)0个
5.方程的根是
(A) (B)
(C) (D)
6.如图,将绕点旋转得到,设点的坐标为,则点的坐标为
(A) (B) (C) (D)
二、填空题(每小题3分,共27分)
7.计算: .
8.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .
9.写出一个随的增大而增大的一次函数的解析式: .
10.将一副直角三角板如图放置,使含角的三角板的短直角边和含角的三角板的一条直角边重合,则的度数为 .
11.如图,切于点,交于点,点是上异于点的一点,若,则的度数是 .
12.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率是 .
13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为 .
14.如图,矩形中,.以的长为半径的交边于点,则图中阴影部分的面积为 .
15.如图,中,.点在边上,点是边上一点(不与点重合),且,则的取值范围是 .
三、解答题(本大题共8个小题,满分75分)
16.(8分)已知,,.将他们组合成或的形式,请你从中任选一种进行计算.先化简,再求值,其中.
17.(9分)如图,四边形是平行四边形,和关于所在的直线对称,和相交于点,连结.
(1)请直接写出图中所有的等腰三角形(不添加字母);
(2)求证:.
18.(9分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者高凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
图① 图②
(1)求这次调查的家长人数,并补全图;
(2)求图中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是持“无所谓”态度的学生的概率是多少?
19.(9分)如图,在梯形中,,是的中点,,,点是边上一动点,设的长为.
(1)当的值为 时,以点为顶点的四边形为直角梯形.
(2)当的值为 时,以点为顶点的四边形为平行四边形.
(3)当在边上运动的过程中,以点为顶点的四边形能否构成菱形?试说明理由.
20.(9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1 600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为,单价和为元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?
21.(10分)如图,直线与反比例函数的图象交于,
两点.
(1)求的值;
(2)直接写出时的取值范围;
(3)如图,等腰梯形中,,,边在轴上,过点作于,和反比例函数的图象交于点.当梯形的面积为12时,请判断和的大小关系,并说明理由.
22.(10分)
(1)操作发现
如图,矩形中,是的中点,将沿折叠后得到,且点在矩形内部.小明将延长交于点,认为,你同意吗?说明理由.
(2)问题解决
保持(1)中的条件不变,若,求的值.
(3)类比探究
保持(1)中的条件不变,若,求的值.
23.(11分)在平面直角坐标系中,已知抛物线经过,,三点.
(1)求抛物线的解析式;
(2)若点为第三象限内抛物线上一动点,点的横坐标为,的面积为.求关于的函数关系式,并求出的最大值;
(3)若点是抛物线上的动点,点是直线上的动点,判断有几个位置能使以点为顶点的四边形为平行四边形,直接写出相应的点的坐标.
全日制义务教育数学课程标准
(修改稿)
2007-11
目 录
前 言 3
第一部分 基本理念与设计思路 4
一、基本理念 5
二、设计思路 8
第二部分 课程目标 13
一、总体目标 13
二、学段目标 15
第三部分 内容标准 18
第一学段(1-3年级) 18
一、数与代数 18
二、图形与几何 19
三、统计与概率 19
四、综合与实践 20
第二学段(4-6年级) 20
一、数与代数 20
二、图形与几何 21
三、统计与概率 22
四、综合与实践 23
第三学段(7-9年级) 23
一、数与代数 23
二、图形与几何 26
三、统计与概率 31
四、综合与实践 31
第四部分 实施建议 33
一、教学建议 33
二、评价建议 38
三、教材编写建议 42
附录1 课程目标的术语解释 47
附录2 内容标准及教学建议中的案例 48
前 言
《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是根据《义务教育法》、《基础教育课程改革纲要(试行)》制定的。《标准》以推进素质教育的实施,培养学生的创新精神和实践能力,促进学生全面发展为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施提出建议。
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是每一个学生在该阶段应达到的基本要求。《标准》是教学、评估和考试命题、教材编写的依据。在实施过程中,应当遵照《标准》的要求,充分考虑全体学生的发展,关注个体差异,因材施教。为更好地理解和把握有关的目标和内容,《标准》编入了一些案例,以供参考。
第一部分 基本理念与设计思路
数学是研究数量关系和空间形式的科学。数学与人类发展和社会进步息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在人文科学与社会科学中发挥着越来越大的作用。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。数学教育作为促进学生全面发展教育的重要组成部分,既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展。课程设计要符合数学本身的特点,体现数学的实质;要符合学生的认知规律和心理特征,有利于激发学生的学习兴趣;要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。
一、基本理念
1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2.课程内容既要反映社会的需要、数学的特点,也要符合学生的认知规律。它不仅包括数学的结论,也包括数学结论的形成过程和数学思想方法。课程内容的选择要贴近学生的实际,有利于学生体验、思考与探索。课程内容的组织要处理好过程与结果的关系,直观与抽象的关系,直接经验与间接经验的关系。课程内容的呈现应注意层次性和多样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。
4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立评价目标多元、评价方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。
5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。
二、设计思路
(一) 关于学段
为了体现义务教育数学课程的整体性,《标准》统筹考虑了九年的课程内容。同时,根据学生发展的生理和心理特征,将九年的学习时间划分为三个学段:第一学段(1-3年级)、第二学段(4-6年级)、第三学段(7-9年级)。
(二) 关于目标
《标准》提出义务教育阶段数学课程的总体目标和学段目标,并从知识技能、数学思考、问题解决、情感态度等四个方面加以阐述。
数学学习活动的目标包括结果目标和过程目标。《标准》使用“了解、理解、掌握、运用”等术语表述学习活动结果目标的不同水平,使用“经历、体验、探索”等术语表述学习活动过程目标的不同程度(术语解释见附录1)。
(三) 关于课程内容
在各学段中,《标准》安排了四个方面的课程内容:“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。
◆数与代数
“数与代数”的主要内容有:数的认识,数的表示,数的大小,数的运算,数量的估计;字母表示数,代数式及其运算;方程、方程组、不等式、函数等。
在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。
数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力还有助于学生理解运算的算理,能够寻求合理简洁的运算途径解决问题。
模型思想的建立是帮助学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
◆图形与几何
“图形与几何”主要内容有:空间和平面基本图形的认识,图形的性质、分类和度量;图形的平移、旋转、轴对称、相似和投影;平面图形基本性质的证明;运用坐标描述图形的位置和运动。
在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言描述画出图形等。
几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观不仅在“图形与几何”的学习中,而且在整个数学学习过程中都发挥着重要作用。
推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则证明(包括逻辑和运算)结论。在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性。
◆统计与概率
“统计与概率”主要内容有:收集、整理和描述数据,包括简单抽样、整理调查数据、绘制统计图表等;处理数据,包括计算平均数、中位数、众数、极差、方差等;从数据中提取信息并进行简单的推断;简单随机事件及其发生的概率。
在“统计与概率”中,应帮助学生逐渐建立起数据分析观念,了解随机现象。
数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律。
在概率的学习中,帮助学生了解随机现象是重要的。在义务教育阶段,所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。
◆综合与实践
“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。“综合与实践”的教学目标是帮助学生积累数学活动经验,培养学生应用意识和创新意识。教学中应强调问题情境与学生所学的知识和生活经验相结合,鼓励学生独立思考、合作交流,自主设计解决问题的思路。经历发现和提出问题、分析和解决问题的全过程,感悟数学与生活实际、数学与其他学科、数学各部分内容之间的联系,加深对所学数学内容的理解。实践活动的形式是丰富的,包括观察、实验、操作、调查、分析、交流和总结等。在教学中,教师要关注学生获得的结果,更要关注学生解决问题的过程和情感体验,发挥组织者、引导者、合作者的作用。
“综合与实践”的教学活动应当保证每学期至少一次,可以在课堂上完成,也可以课内外相结合。
(四)关于实施建议
为了保证课程的顺利实施,《标准》分别对教学活动、学习评价、教材编写等方面提出了建议。同时,为了更好地说明课程内容,《标准》在相关部分提供了一些案例(参见附录2)。
第二部分 课程目标
总体目标
通过义务教育阶段的数学学习,学生能:
1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
总体目标从以下四个方面具体阐述:
知识技能
●经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。
●经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。
●经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。
●参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验。
数学思考
●建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维与抽象思维。
●体会统计方法的意义,发展数据分析观念,感受随机现象。
●在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。
●学会独立思考,体会数学的基本思想和思维方式。
问题
解决
●初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。
●获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
●学会与他人合作交流。
●初步形成评价与反思的意识。
情感态度
●积极参与数学活动,对数学有好奇心和求知欲。
●在数学学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心。
●体会数学的特点,了解数学的价值。
●养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯,形成实事求是的科学态度。
总体目标的这四个方面,不是互相独立和割裂的,而是一个密切联系、相互交融的有机整体。在课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。
二、学段目标
第一学段(1-3年级)
知识技能
1.经历从日常生活中抽象出数的过程,理解万以内数的意义,初步认识分数和小数;理解常见的量;体会四则运算的意义,掌握必要的运算技能;在具体情境中,能进行简单的估算。
2.经历从实际物体中抽象出简单几何体和平面图形的过程,了解一些简单几何体和常见的平面图形;感受平移、旋转、轴对称现象;认识物体的相对位置。掌握初步的测量、识图和画图的技能。
3.经历简单的数据收集、整理、分析的过程,了解简单的数据处理方法。
数学思考
1.在运用数及适当的度量单位描述现实生活中的简单现象,以及对运算结果进行估计的过程中,发展数感;在从物体中抽象出几何图形、想像图形的运动和位置的过程中,发展空间观念。
2.能对调查过程中获得的简单数据进行归类,体验数据中蕴涵着信息。
3. 在观察、操作等活动中,能提出一些简单的猜想。
4.会独立思考问题,表达自己的想法。
问题解决
1.能在教师的指导下,从日常生活中发现和提出简单的数学问题,并尝试解决。
2.了解分析问题和解决问题的一些基本方法,知道同一个问题可以有不同的解决方法。
3.体验与他人合作交流解决问题的过程。
4.尝试回顾解决问题的过程。
情感态度
1.对身边与数学有关的事物有好奇心,能参与数学活动。
2.在他人帮助下,感受数学活动中的成功,能尝试克服困难。
3.了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。
4.能倾听别人的意见,尝试对别人的想法提出建议,知道应该尊重客观事实。
第二学段(4-6年级)
知识技能
1.体验从具体情境中抽象出数的过程,认识万以上的数;理解分数、小数、百分数的意义,了解负数;掌握必要的运算技能;理解估算的意义;能用方程表示简单的数量关系,能解简单的方程。
2.探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的基本特征;体验简单图形的运动过程,能在方格纸上做简单图形运动后的图形,了解确定物体位置的一些基本方法;掌握测量、识图和画图的基本方法。
3.经历数据的收集、整理和分析的过程,掌握一些简单的数据处理技能;体验随机事件和事件发生的等可能性。
4.能借助计算器解决简单的应用问题。
数学思考
1.初步形成数感和空间观念,感受符号和几何直观的作用。
2.进一步认识到数据中蕴含着信息,发展数据分析观念;感受随机现象。
3.在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果。
4. 会独立思考,体会一些数学的基本思想。
问题解决
1.尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决。
2.能探索分析和解决简单问题的有效方法,了解解决问题方法的多样性。
3.经历与他人合作解决问题的过程,尝试解释自己的思考过程。
4.能回顾解决问题的过程,初步判断结果的合理性。
情感态度
1.愿意了解社会生活中与数学相关的信息,主动参与数学学习活动。
2.在他人的鼓励和引导下,体验克服困难、解决问题的过程,相信自己能够学好数学。
3.在运用数学知识和方法解决问题的过程中,认识数学的价值。
4.初步养成乐于思考、勇于质疑、实事求是等良好品质。
第三学段(7-9年级)
知识技能
1.体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。
2.探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;探索并理解平面直角坐标系,能确定位置。
3.体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。
数学思考
1.通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。
2.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随即现象的特点。
3.体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式的数学活动中,发展合情推理与演绎推理的能力。
4.能独立思考,体会数学的基本思想和思维方式。
问题解决
1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。
3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
4.能针对他人所提的问题进行反思,初步形成评价与反思的意识。
情感态度
1.积极参与数学活动,对数学有好奇心和求知欲。
2.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。
3.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。
4.敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。
第三部分 内容标准
第一学段(1-3年级)
一、数与代数
(一)数的认识
1. 在现实情境中理解万以内数的意义,能认、读、写万以内的数,能用数表示物体的个数或事物的顺序和位置。
2. 能说出各数位的名称,理解各数位上的数字表示的意义。
3. 理解符号<,=,>的含义,能用符号和词语描述万以内数的大小(参见例1)。
4. 在具体情境中感受大数的意义,并能进行估计(参见例2)。
5. 能结合具体情境初步认识小数和分数,能读、写小数和分数。
6. 能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。
7. 能运用数表示日常生活中的一些事物,并进行交流(参见例3)。
(二)数的运算
1. 结合具体情境,体会整数四则运算的意义(参见例4)。
2. 能熟练地口算20以内的加减法和表内乘除法,能口算百以内的加减法和一位数乘除两位数。
3. 能计算三位数的加减法,一位数乘三位数、两位数乘两位数的乘法,三位数除以一位数的除法。
4.能进行简单的整数四则混合运算(两步)。
5. 会进行同分母分数(分母小于10)的加减运算以及一位小数的加减运算。
6. 能结合具体情境进行估算,并解释估算的过程(参见例5)。
7. 经历与他人交流各自算法的过程。
8. 能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释(参见例6)。
(三)常见的量
1. 在现实情境中,认识元、角、分,并了解它们之间的关系。
2. 能认识钟表,了解24时记时法;结合自己的生活经验,体验时间的长短(参见例7)。
3. 认识年、月、日,了解它们之间的关系。
4. 在具体生活情境中,感受并认识克、千克、吨,并能进行简单的换算。
5. 结合生活实际,解决与常见的量有关的简单问题。
(四)探索规律
探索简单的变化规律(参见例8、例9)。
二、图形与几何
(一)图形的认识
1. 能通过实物和模型辨认长方体、正方体、圆柱和球等几何体。
2. 能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状(参见例10)。
3. 辨认长方形、正方形、三角形、平行四边形、圆等简单图形。
4. 通过观察、操作,初步认识长方形、正方形的特征。
5. 会用长方形、正方形、三角形、平行四边形或圆拼图。
6. 结合生活情境认识角,了解直角、锐角和钝角。
7. 能对简单几何体和图形进行分类(参见例20)。
(二)测量
1. 结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性。
2. 在实践活动中,体会千米、米、厘米的含义,知道分米、毫米,能进行简单的单位换算,能恰当地选择长度单位(参见例11)。
3. 能估测一些物体的长度,并进行测量。
4. 结合实例认识周长,并能测量简单图形的周长(参见例12),探索并掌握长方形、正方形的周长公式。
5. 结合实例认识面积,体会并认识面积单位(厘米2、分米2、米2),能进行简单的单位换算。
6. 探索并掌握长方形、正方形的面积公式,能估计给定简单图形的面积(参见例13)。
(三)图形的运动
1. 结合实例,感知平移、旋转、轴对称现象(参见例14)。
2. 能辨认简单图形平移后的图形(参见例15)。
3. 通过观察、操作,认识轴对称图形。
(四)图形与位置
1. 会用上、下,左、右,前、后描述物体的相对位置。
2. 给定东、南、西、北四个方向中的一个方向,能辨认其余三个方向,知道东北、西北、东南、西南四个方向,能用这些词语描绘物体所在的方向(参见例16)。
三、统计与概率
1. 能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类标准的关系(参见例17)。
2. 经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并运用自己的方式(文字、图画、表格等)呈现整理数据的结果(参见例18)。
3. 通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息(参看例19)。
四、综合与实践
1.通过实践活动,获得初步的数学活动经验,感受数学在日常生活中的作用,体验能够运用所学的知识和方法解决简单问题。
2.在实践活动中,知道所要解决的具体问题和办法。
3.经历实践操作的过程,进一步理解所学的内容。
(参见例20,例21,例22)
第二学段(4-6年级)
一、数与代数
(一)数的认识
1. 在具体的情境中,认识万以上的数,了解十进制计数法,会用万、亿为单位表示大数。
2. 结合现实情境感受大数的意义,并能进行估计(参见例23)。
3. 会运用数描述事物的某些特征,进一步体会数在日常生活中的作用(参见例24)。
4. 知道2,3,5的倍数的特征,了解公倍数和最小公倍数;在1-100的自然数中,能找出10以内自然数的所有倍数,能找出10以内两个自然数的公倍数和最小公倍数。
5. 了解公因数和最大公因数;在1-100的自然数中,能找出某个自然数的所有因数,能找出两个自然数的公因数和最大公因数。
6. 了解自然数、整数,奇数和偶数,质(素)数和合数。
7. 进一步认识小数和分数,认识百分数(参见例25);会进行小数、分数和百分数的转化(不包括将循环小数化为分数)。
8. 能比较小数的大小和分数的大小。
9.在熟悉的生活情境中,了解负数的意义,会用负数表示日常生活中的一些量。
(二)数的运算
1.能笔算三位数乘两位数的乘法,三位数除以两位数的除法。
2.能进行简单的整数四则混合运算(以两步为主,不超过三步)。
3.探索并了解运算律(加法的交换律和结合律、乘法的交换律和结合律、乘法对加法的分配律),会应用运算律进行一些简便运算。
4.在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。
5.能分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步)。
6.能解决有关小数、分数和百分数的简单实际问题。
7.在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题。
8.经历与他人交流各自算法的过程,并能表达自己的想法。
9.在解决问题的过程中,能选择合适的方法进行估算(参见例26、例27)。
10.能借助计算器进行运算,解决简单的实际问题,探索简单的规律(参见例28)。
(三)式与方程
1.在具体情境中会用字母表示数。
2.结合简单的实际情境,了解等量关系,并能用字母表示。
3. 能用方程表示简单情境中的等量关系,了解方程的作用。
4.能解简单的方程(如3x+2=5,2x-x=3)。
(四)正比例、反比例
1.在实际情境中理解比及按比例分配的含义,并能解决简单的问题。
2.通过具体问题认识成正比例的量或反比例的量。
3.能根据给出的有正比例关系的数据在方格纸上画图,并根据其中一个量的值估计另一个量的值(参见例29)。
4.能找出生活中成正比例和成反比例量的实例,并进行交流。
(五)探索规律
探求给定事物中隐含的规律或变化趋势(参见例30、例31)。
二、图形与几何
(一)图形的认识
1.结合实例了解线段、射线和直线。
2.体会两点间所有连线中线段最短,知道两点间的距离。
3.知道平角与周角,了解周角、平角、钝角、直角、锐角之间的大小关系。
4.结合生活情境了解平面上两条直线的平行和相交(包括垂直)关系。
5.通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆。
6.认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°。
7.认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
8.能辨认从不同方向(前面、侧面、上面)看到的物体的形状图(参见例32)。
9.通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
(二)测量
1.能用量角器量指定角的度数,能画指定度数的角,会用三角尺画30°,45°,60°,90°角。
2.探索并掌握三角形、平行四边形和梯形的面积公式。
3.认识面积单位:千米2、公顷。
4.通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式;探索并掌握圆的面积公式。
5.会用方格纸估计不规则图形的面积(参见例33)。
6.通过实例了解体积(包括容积)的意义及度量单位(米3、分米3、厘米3、升、毫升),能进行单位之间的换算,感受1米3、1厘米3以及1升、1毫升的实际意义。
7.结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法,并能解决简单的实际问题。
8.探索某些实物(如土豆等)体积的测量方法(参见例34)。
(三)图形的运动
1.通过观察、操作等,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形。
2.通过观察实例,在方格纸上认识图形的平移与旋转,能在方格纸上按水平或垂直方向将简单图形平移,能在方格纸上将简单图形旋转90°(参见例35)。
3.能利用方格纸等按一定比例将简单图形放大或缩小。
4.欣赏生活中的图案,运用平移、旋转和轴对称在方格纸上设计简单的图案。
(四)图形与位置
1.了解比例尺;在具体情境中,会按给定的比例进行图上距离与实际距离的换算。
2.能根据物体相对于参照点的方向和距离确定其位置。
3.会描述简单的路线图(参见例36)。
4.在具体情境中,能在方格纸上用数对表示位置,知道数对(限于正整数)与方格纸上点的对应(参见例37)。
三、统计与概率
(一)简单数据统计过程
1.经历简单的收集、整理、描述和分析数据的过程(可使用计算器)。
2.会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据。
3.认识条形统计图、扇形统计图、折线统计图;能选择条形统计图、折线统计图直观、有效地表示数据(参见例38)。
4.体会平均数的意义,能计算平均数,能用自己的语言解释其实际意义(参见例38)。
5.能从报刊杂志、电视等媒体中,有意识地获得一些数据信息,并能读懂简单的统计图表(参见例39)。
6.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例38和例40)。
(二)随机现象发生的可能性
1.结合具体情境,了解简单的随机现象;能列出简单的随机现象中所有可能发生的结果(参看例41)。
2.通过实验、游戏等活动,感受随机现象结果发生的可能性是有大小的,能对一些简单的随机现象发生的可能性大小作出定性描述,并和同学交流(参看例41)。
四、综合与实践
1. 经历有目的、有设计、有步骤、有合作的实践活动。
2.结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3.在给定目标下,初步体验针对具体问题提出设计思路、解决问题的过程。
4. 通过应用和反思,加深对所用知识和方法的理解,了解所学知识之间的联系,积累数学活动经验。
(参见例42、例43、例44、例45、例46)
第三学段(7-9年级)
一、数与代数
(一)数与式
1.有理数
(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。
(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)。
(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。
(4)理解有理数的运算律,能运用运算律简化运算。
(5)能运用有理数的运算解决简单的问题(参见例47)。
2.实数
(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。
(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。
(4)能用有理数估计一个无理数的大致范围(参见例48)。
(5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。
(6)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算(参见例49)。
3.代数式
(1)借助现实情境了解代数式,进一步理解用字母表示数的意义(参见例50)。
(2)能分析简单问题中的数量关系,并用代数式表示。
(3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
4.整式与分式
(1)了解整数指数幂的意义和基本性质;会用科学记数法表示数(包括在计算器上表示)。
(2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。
(3)能推导乘法公式:(a+b)( a-b) = a 2- b 2;(a±b)2 = a 2±2ab + b 2,了解公式的几何背景,并能利用公式进行简单计算(参见例51)。
(4)能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(系数是正整数)。
(5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。
(二)方程与不等式
1.方程与方程组
(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型(参见例52)。
(2)经历估计方程解的过程(参见例53)。
(3)掌握等式的基本性质。
(4)能解一元一次方程、可化为一元一次方程的分式方程。
(5)掌握代入消元法和加减消元法,能解二元一次方程组。
(6)*能解简单的三元一次方程组。
(7)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。
(8)能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。
(9)了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)。
(10)能根据具体问题的实际意义,检验方程的解是否合理。
2.不等式与不等式组
(1)结合具体问题,了解不等式的意义,探索不等式的基本性质(参见例54)。
(2)能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
(三)函数
1.函数
(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。
(2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。
(3)能结合图像对简单实际问题中的函数关系进行分析(参见例55)。
(4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。
(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系(参见例56)。
(6)结合对函数关系的分析,能对变量的变化情况进行初步讨论(参见例57)。
2.一次函数
(1)结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的解析表达式(参见例58)。
(2)会利用待定系数法确定一次函数的解析表达式。
(3)能画出一次函数的图像,根据一次函数的图像和解析表达式 y = kx + b (k≠0)探索并理解k>0和k<0时,图像的变化情况。
(4)理解正比例函数。
(5)体会一次函数与二元一次方程、二元一次方程组的关系。
(6)能用一次函数解决简单实际问题。
3.反比例函数
(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。
(2)能画出反比例函数的图像,根据图像和解析表达式 y =(k≠0)探索并理解k>0和k<0时,图像的变化情况。
(3)能用反比例函数解决简单实际问题。
4.二次函数
(1)通过对实际问题的分析,体会二次函数的意义。
(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。
(3)会用配方法将数字系数的二次函数的表达式化为的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。
(4)会利用二次函数的图像求一元二次方程的近似解。
(5)* 知道给定不共线三点的坐标可以确定一个二次函数。
二、图形与几何
(一)图形的性质
1.点、线、面、角
(1)通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等(参见例59)。
(2)会比较线段的大小,理解线段的和、差,以及线段中点的意义。
(3)直观地了解平面上两条直线(不重合,下同)之间的关系:相交与不相交。
(4)掌握基本事实:两点确定一条直线。
(5)掌握基本事实:两点之间线段最短。
(6)理解两点间距离的意义,能度量两点之间的距离。
(7)理解角的概念,能比较角的大小。
(8)认识度、分、秒,会对度、分、秒进行简单的换算,并计算角的和、差。
2.相交线与平行线
(1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。
(2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。
(3)理解点到直线的距离的意义,能度量点到直线的距离。
(4)掌握基本事实:过一点有且只有一条直线与这条直线垂直。
(5)识别同位角、内错角、同旁内角。
(6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
(7)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。
(8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。 *了解平行线性质定理的证明(参看例60)。
(9)能用三角尺和直尺过已知直线外一点画这条直线的平行线。
(10)探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。
(11)了解平行于同一条直线的两条直线平行。
3.三角形
(1)理解三角形及其内角、外角、中线、高线、角平分线等概念,会按照边长的关系和角的大小对三角形进行分类,了解三角形的稳定性。
(2)探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。
(3)理解全等三角形的概念,能识别全等三角形中的对应边、对应角。
(4)掌握基本事实:两边及其夹角分别相等的两个三角形全等(参见例61)。
(5)掌握基本事实:两角及其夹边分别相等的两个三角形全等(参见例61)。
(6)掌握基本事实:三边分别相等的两个三角形全等。
(7)证明定理:两角及其中一组等角的对边分别相等的两个三角形全等。
(8)探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。
(9)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。
(10)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。
(11)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。掌握有两个角互余的三角形是直角三角形。
(12)探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
(13)探索并掌握判定直角三角形全等的“斜边、直角边”定理。
(14)了解三角形重心的概念。
4.四边形
(1)了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。
(2)理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。
(3)探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
(4)了解两条平行线之间距离的意义,能度量两条平行线之间的距离。
(5)探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形具有矩形和菱形的一切性质。(参见例62)
(6)探索并证明三角形的中位线定理。
5.圆
(1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。
(2)探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。
(3)探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补。
(4)知道三角形的内心和外心。
(5)了解直线和圆的位置关系,掌握切线的概念。
(6)探索切线与过切点的半径的关系:切线垂直于过切点的半径;反之,过半径外端且垂直于半径的直线是圆的切线。会用三角尺过圆上一点画圆的切线。
(7)探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等(参见例63)。
(8)了解圆与圆的位置关系。
(9)会计算圆的弧长、扇形的面积。
(10)了解正多边形的概念及正多边形与圆的关系。
6.尺规作图
(1)能用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线。
(2)会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形。
(3)会利用基本作图完成:过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形。
(4)在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法。
7.定义、命题、定理
(1)通过具体实例,了解定义、命题、定理、推论的意义。
(2)结合具体事例,会区分命题的条件和结论,了解原命题及其逆命题的概念。识别两个互逆的命题,知道原命题成立其逆命题不一定成立。
(3)知道证明的意义和证明的必要性(参见例75),知道证明要合乎逻辑(参见例64),知道证明的过程可以有不同的表达形式,学会综合法证明的格式。
(4)了解反例的作用,知道利用反例可以判断一个命题是错误的。
(5)通过实例体会反证法的含义。
(二)图形的变化
1.图形的轴对称
(1)通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分(参见例65)。
(2)能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴的对称图形。
(3)了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质。
(4)认识和欣赏自然界和现实生活中的轴对称图形。
2.图形的旋转
(1)通过具体实例认识平面图形关于旋转中心的旋转。探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等(参见例65)。
(2)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
(3)探索线段、平行四边形、正多边形、圆的中心对称性质。
(4)认识和欣赏自然界和现实生活中的中心对称图形。
3.图形的平移
(1)通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等(参见例65)。
(2)认识和欣赏平移在自然界和现实生活中的应用。
(3)运用图形的轴对称、旋转、平移进行图案设计。
4.图形的相似
(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。
(2)通过具体实例认识图形的相似。了解对应角分别相等、对应边分别成比例的多边形叫做相似多边形。相似多边形对应边的比称为相似比。
(3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
(4)探索并了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。 *了解相似三角形判定定理的证明。
(5)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。
(6)了解图形的位似,知道利用位似可以将一个图形放大或缩小。
(7)会利用图形的相似解决一些简单的实际问题(参见例75)。
(8)利用相似的直角三角形,探索并认识锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值。
(9)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。
(10)能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
5.图形的投影
(1)通过丰富的实例,了解中心投影和平行投影的概念。
(2)会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。
(3)了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作实物模型。
(4)通过实例,了解上述视图与展开图在现实生活中的应用。
(三)图形与坐标
1.坐标与图形位置
(1)结合丰富的实例进一步体会用有序数对可以表示物体的位置。
(2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标。
(3)在实际问题中,能建立适当的直角坐标系,描述物体的位置(参见例66)。
(4)会写出简单图形(多边形,矩形)的顶点坐标,体会可以用坐标刻画一个简单图形。
(5)在平面上,能用方位角和距离刻画两个物体的相对位置(参见例67)。
2.坐标与图形运动
(1)在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
(2)在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。
(3)在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。
(4)在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一个边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。
三、统计与概率
(一)抽样与数据分析
1. 经历收集、整理、描述和分析数据的活动,了解数据分析的过程;能用计算器处理较为复杂的数据。
2. 体会抽样的必要性,通过案例了解简单随机抽样(参见例68)。
3. 会制作扇形统计图,能用统计图直观、有效地描述数据。
4. 理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述(参见例69)。
5. 体会刻画数据离中程度的意义,会计算简单数据的方差(参见例70)。
6. 通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息(参见例71)。
7. 体会样本与总体关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。
8. 能解释统计结果,根据结果作出简单的判断和预测,并能进行交流(参见例40)。
9. 通过表格、折线图、趋势图等,了解随机现象的变化趋势(参见例72)。
(二)事件的概率
1. 能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率(参看例73、例74)。
2. 知道通过大量地重复试验,可以用频率来估计概率。
四、综合与实践
1.结合实际情境,引导学生独立思考、合作研究,设计解决具体问题的方案,并加以实施,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。
2.反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。
3.通过对有关问题的探讨,了解所学过知识之间的关联,加深对有关知识的理解,发展应用意识和能力。
(参见例75、例76、例77、例78、例79)
第四部分 实施建议
一、教学建议
教学活动是师生积极参与、交往互动、共同发展的过程。
数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。
在数学教学活动中,教师要把基本理念转化为自己的教学行为, 处理好教师讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;合理地运用现代信息技术,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益。
1.数学教学活动要注重课程目标的整体实现
为使每个学生都受到良好的数学教育,数学教学不仅要使学生获得数学的知识技能,而且要把“知识技能”、“数学思考”、“问题解决”、“情感态度”四个方面目标有机结合,整体实现课程目标。
课程目标的整体实现需要日积月累。在日常的教学活动中,教师应努力挖掘教学内容中可能蕴涵的、与上述四个方面目标有关的教育价值,通过长期的教学过程,逐渐实现课程的整体目标。因此,无论是设计、实施课堂教学方案,还是组织各类教学活动,不仅要重视学生获得知识技能,而且要激发学生的学习兴趣,通过独立思考或者合作交流感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯。
例如,关于“零指数”教学方案的设计可作如下考虑:教学目标不仅要包括了解零指数幂的“规定”、会进行简单计算,还要包括感受这个“规定”的合理性,并在这个过程中学会数学思考、感悟理性精神(参见例80)。
2.重视学生在学习活动中的主体地位
有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。
(1)学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。
学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生应用知识并逐步形成技能,离不开自己的实践;学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,才能在数学思考、问题解决和情感态度方面得到发展(参见例81)。
(2)教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。
教师的“组织”作用主要体现在两个方面:第一,教师应当准确把握教学内容的数学实质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案。第二,在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动。
教师的“引导”作用主要体现在:通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动。
教师与学生的“合作”主要体现在:教师以平等、尊重的态度鼓励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果。
(3)处理好学生主体地位和教师主导作用的关系。
好的教学活动,应是学生主体地位和教师主导作用的和谐统一。一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展(参见例31、例52)。
实行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体。
3.注重学生对基础知识、基本技能的理解和掌握
“知识技能”既是学生发展的基础性目标,又是落实“数学思考”、“问题解决”、“情感态度”目标的载体。
(1)数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。
学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,组织学生开展实验、操作、尝试等活动,引导学生进行观察、分析,抽象概括,运用知识进行判断。教师还应揭示知识的数学实质及其体现的数学思想,帮助学生理清相关知识之间的区别和联系等。
数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系,处理好局部知识与整体知识的关系,引导学生感受数学的整体性,体会对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。
(2)在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。例如,对于整数乘法计算,学生不仅要掌握如何进行计算,而且要知道相应的算理;对于尺规作图,学生不仅要知道作图的步骤,而且要能知道实施这些步骤的理由。
基本技能的形成,需要一定量的训练,但要适度,不能依赖机械的重复操作,要注重训练的实效性。教师应把握技能形成的阶段性,根据内容的要求和学生的实际,分层次地落实。
4.引导学生积累数学活动经验、感悟数学思想
数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如归纳、演绎、抽象、转化、分类、模型、数形结合、随机等。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步积累数学活动经验、感悟数学思想。
(1)合理创设情境
教学中应当努力创设源于学生生活的现实情境。好的“现实情境”,应当是学生熟悉的、简明的、有利于引向数学实质的、真实或合理的。
此外,教学中也可以根据具体内容创设其他类型的情境,包括根据已有数学知识创设的情境、已有其他学科知识创设的情境。
(2)引导学生自主探索。
数学知识的形成以及逐渐完善的过程中往往蕴涵着一定的数学思想。在教学活动中,教师应选择适当的形式和素材组织学生进行自主探索。探索活动的价值不仅在于获得知识,还包括引导学生在探索的过程中积累基本的数学活动经验,感悟基本的数学思想。
有效地开展探索活动,首先要选择合适的问题,还需要整体设计探索活动(参见例82、例83)。
组织学生开展探索活动应当注意以下几点:
① 鼓励学生在独立思考的基础上,与他人合作交流。没有每个学生的独立思考,合作交流就缺乏基础;没有同伴间的合作交流,个人的思考有时难以深入。
② 课堂教学的时间是有限的,教师必须把握好学生自主探索活动的时间,给最终的归纳总结留有余地。教师需要在实践中不断提高自己组织、引导学生开展探索活动的能力,提高探索活动的实效。
③ 为学生自主探索提供适当的空间。既要关注学生获得的结果,更要关注学生探索的过程。
④ 处理好学生自主探索与教师示范的关系。对于学生的探索活动,教师不仅要给予启发、引导,而且应适时地进行归纳,示范阶段性结论,明晰进一步探索的思路。
⑤ 对于进行自主探索有困难的学生,教师应给以具体的帮助、鼓励和指导,努力使他们也能参与探索活动并积极地思考。
5.关注学生情感态度的发展
根据课程目标,广大教师要把落实情感态度的目标作为己任,努力把情感态度目标有机地融合在数学教学过程之中。设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:
如何引导学生积极参与教学过程?
如何组织学生探索,鼓励学生创新?
如何引导学生感受数学的价值?
如何使他们愿意学,喜欢学,对数学感兴趣?
如何让学生体验成功的喜悦,从而增强自信心?
如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑?
如何让学生做自己能做的事,并对自己做的事情负责?
如何帮助学生锻炼克服困难的意志?
如何培养学生良好的学习习惯?
在教育教学活动中,教师要尊重学生,以强烈的责任心,严谨的治学态度,健全的人格感染和影响学生;要不断提高自身的数学素养,善于挖掘教学内容的教育价值;要在教学实践中善于用《标准》的理念分析各种现象,恰当地进行养成教育。
例如,当学生知道自己课堂练习有误、能够改正却又不努力改正时,教师就应该对学生说:“你已经知道解题有错误,必须自己改正,相信你自己能够改正。”这里,“必须自己改正”就是要求学生“对自己做的事负责”,“相信你自己能够改正”则是给学生以鼓励,激发学生的自信心。
又如,学生不能合适地回答教师的课堂提问时,教师不应随意地打断学生的回答,而应倾听学生的意见,也不要以自己预设的“标准”简单地否定学生的意见,而应判断学生的解答是否具有合理的成分并加以恰当的引导。
6.合理把握“综合与实践”的实施
“综合与实践”的实施是以问题为载体、以学生自主参与为主的学习活动。它有别于学习具体知识的探索活动,更有别于课堂上教师的直接讲授。它是教师通过问题引领、学生全程参与、实践过程相对完整的学习活动。
积累数学活动经验、培养学生应用意识和创新意识是数学课程的重要目标,应贯穿整个数学课程之中。“综合与实践”是实现这些目标的重要和有效的载体。“综合与实践”的教学,重在实践、重在综合。重在实践是指在活动中,注重学生自主参与、全过程参与,重视学生积极动脑、动手、动口。重在综合是指在活动中,注重数学与生活实际、数学与其他学科、数学内部知识的联系和综合应用。
教师在教学设计和实施时应特别关注的几个环节是:问题的选择,问题的展开过程,学生参与的方式,学生的合作交流,活动过程和结果的展示与评价等。
要使学生能充分、自主地参与“综合与实践”活动,选择恰当的问题是关键。这些问题既可来自教材,也可以由教师、学生开发。提倡教师研制、开发、生成出更多适合本地学生特点的、有利于实现“综合与实践”课程目标的好问题。
实施“综合与实践”时,教师要放手让学生参与,启发和引导学生进入角色,组织好学生之间的合作交流,并照顾到所有的学生。教师不仅要关注结果,更要关注过程,不要急于求成,要鼓励引导学生充分利用“综合与实践”的过程,积累活动经验、展现思考过程、交流收获体会、激发创造潜能。
在实施过程中,教师要注意观察、积累、分析、反思,使“综合与实践”的实施成为提高教师自身和学生素质的互动过程。
教师应该根据不同学段学生的年龄特征和认知水平,根据学段目标,合理设计并组织实施“综合与实践”活动。
7.教学中应当注意的几个关系
(1)“预设”与“生成”的关系
教学方案是教师对教学过程的“预设”,教学方案的形成依赖于教师对教材的理解、钻研和再创造。理解和钻研教材,应以《标准》为依据,把握好教材的编写意图和教学内容的教育价值;对教材的再创造,集中表现在:能根据所教班级学生的实际情况,选择贴切的教学素材和教学流程,准确地体现基本理念和内容标准规定的要求。
实施教学方案,是把“预设”转化为实际的教学活动。在这个过程中,师生双方的互动往往会“生成”一些新的教学资源,这就需要教师能够及时把握,因势利导,适时调整预案,使教学活动收到更好的效果。
(2)面向全体学生与关注学生个体差异的关系
教学活动应努力使全体学生达到课程目标的基本要求,同时要关注学生的个体差异。
对于学习有困难的学生,教师要给予及时的关注与帮助,鼓励他们主动参与数学学习活动,并尝试用自己的方式解决问题、发表自己的看法,要及时地肯定他们的点滴进步,耐心地引导他们分析产生困难或错误的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。对于学有余力并对数学有兴趣的学生,教师要为他们提供足够的材料和思维空间,指导他们阅读,发展他们的数学才能。
在教学活动中,要鼓励与提倡解决问题策略的多样化,恰当评价学生在解决问题过程中所表现出的不同水平;问题情境的设计、教学过程的展开、练习的安排等要尽可能地让所有学生都能主动参与,提出各自解决问题的策略,并引导学生通过与他人的交流选择合适的策略,丰富数学活动的经验,提高思维水平。
(3)合情推理与演绎推理的关系
推理贯穿于数学教学的始终,推理能力的形成和提高需要一个长期的、循序渐进的过程。义务教育阶段要注重学生思考的条理性,不要过分强调推理的形式。
推理包括合情推理和演绎推理。教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;通过实例使学生逐步意识到,结论的正确性需要演绎推理的确认,可以根据学生的年龄特征提出不同程度的要求。
在第三学段中,应把证明作为探索活动的自然延续和必要发展,使学生知道合情推理与演绎推理是相辅相成的两种推理形式。“证明”的教学应关注学生对证明必要性的感受,对证明基本方法的掌握和证明过程的体验。证明命题时,应要求证明过程及其表述符合逻辑,清晰而有条理(参见例63)。此外,还可以恰当地引导学生探索证明同一命题的不同思路和方法,进行比较和讨论,激发学生对数学证明的兴趣,发展学生思维的广阔性和灵活性。
(4)使用现代信息技术与教学手段多样化的关系
合理地应用现代信息技术,注重信息技术与课程内容的整合,能有效地改变教学方式,提高课堂教学的效益。有条件的地区,教学中要尽可能地使用计算器、计算机以及有关软件;暂时没有这种条件的地区,一方面要积极创造条件改善教学设施,另一方面广大教师应努力自制教具以弥补教学设施的不足。
在学生理解并能正确应用公式、法则进行计算的基础上,鼓励学生用计算器完成较为繁杂的计算。课堂教学、课外作业、实践活动中,应当根据内容标准的要求,允许学生使用计算器,还应当鼓励学生用计算器进行探索规律等活动(参见例28、例51)。
现代信息技术的作用不能完全替代原有的教学手段,其真正价值在于实现原有的教学手段难以达到甚至达不到的效果。例如,利用计算机展示函数图象、几何图形的运动变化过程;从数据库中获得数据,绘制合适的统计图表;利用计算机的随机模拟结果,引导学生更好地理解随机事件以及随机事件发生的概率;等等。
在应用现代信息技术的同时,教师还应注重课堂教学的板书设计。必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。
二、评价建议
评价的主要目的是全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。评价应以课程目标和内容标准为依据,体现基本理念,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。
评价不仅要关注学生的学习结果,更要关注学生在学习过程中的发展和变化。应采用多样化的评价方式,恰当呈现并合理利用评价结果,发挥评价的激励作用,保护学生的自尊心和自信心。通过评价得到的信息,可以了解学生数学学习达到的水平和存在的问题,帮助教师进行总结与反思,调整和改进教学内容和教学过程。
1. 基础知识和基本技能的评价
对基础知识和基本技能的评价,应以各学段的具体目标和要求为标准,考查学生对基础知识和基本技能的理解和掌握程度,以及在学习基础知识与基本技能过程中的表现。在对学生学习基础知识和基本技能的结果进行评价时,应该准确地把握“了解、理解、掌握、应用”不同层次的要求。在对学生学习过程进行评价时,应依据“经历、体验、探索”不同层次的要求,采取灵活多样的方法,定性与定量相结合、以定性评价为主。
每一学段的目标是该学段结束时学生应达到的要求,教师需要根据学习的进度和学生的实际情况确定具体的要求。例如,下表是对第一学段有关计算技能的基本要求,这些要求是在学段结束时应达到的,评价时应注意把握尺度,对计算速度不作过高要求。
表1 第一学段计算技能评价要求
学习内容
速度要求
20以内加减法和表内乘除法口算
8-10题/分
百以内加减法口算
3-4题/分
三位数以内的加减法笔算
2-3题/分
两位数乘两位数笔算
1-2题/分
一位数除两位或三位数的除法笔算
1-2题/分
教师应允许学生经过较长时间的努力,随着数学知识与技能的积累逐步达到学段目标。在实施评价时,可以对部分学生采取 “延迟评价”的方式,提供再次评价的机会,使他们看到自己的进步,树立学好数学的信心。
2. 数学思考和问题解决的评价
数学思考和问题解决的评价要依据总体目标和学段目标的要求,体现在整个数学学习过程中。
对数学思考和问题解决的评价应当采用多种形式和方法,特别要重视在平时教学和具体的问题情境中进行评价。例如,在第二学段,教师可以设计下面的活动,评价学生数学思考和问题解决的能力:
用长为50厘米的细绳围成一个边长为整厘米数的长方形,怎样才能使面积达到最大?
在对学生进行评价时,教师可以关注以下几个不同的层次:
第一,学生是否能理解题目的意思,能否思考出解决问题的策略,如通过画图进行尝试;
第二,学生能否列举若干满足条件的长方形,通过列表等形式将其进行有序排列;
第三,在观察、比较的基础上,学生能否发现长和宽发生变化时,面积的变化规律,并猜测问题的结果;
第四,对猜测的结果给予验证;
第五,学生能否猜想当长和宽的变化不限于整厘米数时,面积何时最大。
为此,教师可以根据实际情况,设计有层次的问题评价学生的不同水平。例如,设计下面的问题:
(1)找出三个满足条件的长方形,并记录下长方形的长、宽和面积,并依据长或宽的大小有序地排列出来。
(2)观察排列的结果,探索长方形的长和宽发生变化时,面积相应的变化规律。猜测当长和宽各为多少厘米时,长方形的面积最大。
(3)列举满足条件的长和宽的所有可能结果,验证猜测。
(4)猜想:如果不限制长方形的长和宽为整厘米数,怎样才能使它的面积最大?
教师可以预设目标:对于第二学段的学生,能够完成第(1)、(2)题就达到基本要求,对于能完成第(3)、(4)题的学生,则给予进一步的肯定。
学生解决问题的策略可能与教师的预设有所不同,教师应给予恰当的评价。
3. 情感态度的评价
情感态度的评价应依据课程目标的要求,采用适当的方法进行。主要方式有课堂观察、活动记录、课后访谈等。
情感态度评价主要在平时教学过程中进行,注重考查和记录学生在不同阶段情感态度的状况和发生的变化。例如,可以设计下面的评价表,记录、整理和分析学生参与数学活动的情况。这样的评价表每个学期至少记录1次,教师可以根据实际需要自行设计或调整评价的具体内容。
表2 参与数学活动情况的评价表
学生姓名: 时间: 活动内容:
评价内容
主要表现
参与活动
思考问题
与他人合作
表达与交流
教师可以根据实际情况设计类似的评价表,也可以根据需要设计学生情感态度的综合评价表。
4. 注重对学生数学学习过程的评价
学生在数学学习过程中,知识技能、数学思考、问题解决和情感态度等方面的表现不是孤立的,这些方面的发展综合体现在数学学习过程之中。在评价学生每一个方面表现的同时,要注重对学生学习过程的整体评价,分析学生在不同阶段的发展变化。评价时应注意记录、保留和分析学生在不同时期的学习表现和学业成就。
例如,可以设计下面的课堂观察表用于记录学生在课堂中的表现,积累起来,以便综合了解学生的学习表现以及变化情况。观察表中的项目可以根据实际需要自行调整,随时记录学生在课堂教学中的表现。教师可以有计划地每天记录几位同学的表现,保证每学期每位同学有3-5次的记录;也可以根据实际情况记录某些同学的特殊表现,如提出或回答问题具有独特性的同学、在某方面表现突出同学、或在某方面需要改进的同学。经过一段时间的积累,对于学生平时数学学习的表现,就会有一个较为清晰具体的了解。
表3 课堂观察表
上课时间: 科目: 内容:
学生
项目
王
涛
李
明
陈
虎
课堂参与
提出或回答问题
合作与交流
课堂练习
知识技能的掌握
独立思考
其他
说明:纪录时,可以用3表示优,2表示良,1表示一般,等等。
5. 评价主体的多元化和评价方式的多样性
评价主体的多元化是指教师、家长、同学及学生本人都可以作为评价者,可以综合运用教师评价、学生自我评价、学生相互评价、家长评价等方式,对学生的学习情况和教师的教学情况进行全面的考查。例如,每一个学习单元结束时,教师可以要求学生自我设计一个“学习小结”,用合适的形式(表、图、卡片、电子文本等)归纳学到的知识和方法,学习中的收获,遇到的问题,等等。教师可以通过学习小结对学生的学习情况进行评价,也可以组织学生将自己的学习小结在班级展示交流,通过这种形式总结自己的进步,反思自己的不足以及需要改进的地方,汲取他人值得借鉴的经验。条件允许时,可以请家长参与评价。
评价方式多样化体现在多种评价方法的运用,包括书面测验、口头测验、活动报告、课堂观察、课后访谈、课内外作业、成长记录等等,在条件允许的地方,也可以采用网上交流的方式进行评价。每种评价方式都具有各自的特点,教师应结合学习内容及学生学习的特点,选择适当的评价方式。例如,可以通过课堂观察了解学生学习的过程与学习态度,从作业中了解学生基础知识与基本技能掌握的情况,从探究活动中了解学生独立思考的习惯和合作交流的意识,从成长记录中了解学生的发展变化。
6. 恰当地呈现和利用评价结果
评价结果的呈现应采用定性与定量相结合的方式。第一学段的评价应当以描述性评价为主,第二学段采用描述性评价和等级评价相结合的方式,第三学段可以采用描述性评价和等级(或百分制)评价相结合的方式。
评价结果的呈现和利用应有利于增强学生学习数学的自信心,提高学生学习数学的兴趣,使学生养成良好的学习习惯,促进学生的发展。评价结果的呈现,应该更多地关注学生的进步,关注学生已经掌握了什么,获得了哪些提高,具备了什么能力,还有什么潜能,在哪些方面还存在不足,等等。
例如,下面是对某同学第二学段关于“统计与概率”学习的书面评语:
王小明同学,本学期我们学习了收集、整理和表达数据。你通过自己的努力,能收集、记录数据,知道如何求平均数,了解统计图的特点,制作的统计图很出色,在这个方面是全班最好的。但你在使用语言解释统计结果方面有一定困难。继续努力,小明! 评定等级:B。
这个以定性为主的评语,实际上也是教师与学生的一次情感交流。学生阅读这一评语,能够获得成功的体验,树立学好数学的自信心,也知道自己的不足和努力方向。
教师要注意分析全班学生评价结果随时间的变化,从而了解自己教学的成绩和问题,分析、反思教学过程中影响学生能力发展和素质提高的原因,寻求改善教学的对策。
7. 合理设计与实施书面测验
书面测验是考查学生课程目标达成状况的重要方式,合理地设计和实施书面测验有助于全面考查学生的数学学业成就,及时反馈教学成效,不断提高教学质量。
(1)对于学生基础知识和基本技能达成情况的评价,必须准确把握内容标准中的要求。例如,对于一元二次方程根与系数关系的考查,内容标准中的要求是“了解”,并不要求应用这个关系解决其他问题,设计测试题目时应符合这个要求。
内容标准中的选学内容,不得列入考查(考试)范围。
对基础知识和基本技能的考查,要注重考查学生对其中所蕴含的数学本质的理解,考查学生能否在具体情境中合理应用。因此,在设计试题时,应淡化特殊的解题技巧,不出偏题怪题。
(2)在设计试题时,应该关注并且体现《标准》的设计思路中提出的几个核心词:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念。
(3)根据评价的目的合理地设计试题的类型,有效地发挥各种类型题目的功能。例如,为考查学生从具体情境中获取信息的能力,可以设计阅读分析的问题;为考查学生的探究能力,可以设计探索规律的问题;为考查学生解决问题的能力,可以设计具有实际背景的问题;为了考查学生的创造能力,可以设计开放性问题。
三、教材编写建议
数学教材为学生的数学学习活动提供了学习主题、基本线索和知识结构,是实现数学课程目标、实施数学教学的重要资源。
数学教材的编写应以《标准》为依据。教材所选择的学习素材应尽量与学生的生活现实、数学现实、其他学科现实相联系,应有利于加深学生对所要学习内容的数学理解。教材内容的呈现要体现数学知识的整体性,体现重要的数学知识和方法的产生、发展和应用过程;应引导学生进行自主探索与合作交流,并关注对学生人文精神的培养;教材的编写要有利于调动教师的主动性和积极性,有利于教师进行创造性教学。
内容标准是按照学段制订的,并未规定学习内容的呈现顺序。因此,教材可以在不违背数学知识体系的基础上,根据学生的数学学习认知规律、知识背景和活动经验,合理地安排学习内容,形成自己的编排体系,体现出自己的风格和特色。
1. 教材编写应体现科学性
科学性是对教材编写的基本要求。教材一方面要符合数学的学科特征,另一方面要符合学生的认知规律。
(1)全面体现《标准》提出的理念和目标
教材的编写应以《标准》为依据,在准确理解的基础上,全面体现和落实《标准》提出的基本理念和各项目标。
(2)体现课程内容的数学实质
教材中学习素材的选择,图片、情境、案例与栏目等的设置,拓展内容的编写,以及其他课程资源的利用,都应当与所安排的数学内容有实质性联系,有利于提高学生对数学实质的理解,有利于提高学生对于所学内容的兴趣。
(3)准确把握内容标准要求
《标准》对于义务教育阶段的数学教学内容有明确和具体的目标要求,教材的编写应遵循学生的认知规律,准确地把握“过程目标”或“结果目标”要求的程度。例如,关于距离的概念,在第二学段要求“知道”两点间的距离,在第三学段要求“理解”两点间距离的意义,“能”度量两点之间的距离,在编写相关内容时,一方面要把握好“知道”与“理解”、“能”之间程度的差异,一方面要注意内容之间的衔接。
(4)教材的编写要有一定的实验依据
教材的内容、案例的设计、习题的配置等,要经过课堂教学的实践检验,特别是新增的内容要经过较大范围的实验,根据实践的结果推敲可行性,并不断改进与完善。
2. 教材编写应体现整体性
教材编写应当体现整体性,注重突出核心内容,注重内容之间的相互联系,注重体现学生学习的整体性。
(1)整体体现课程内容的核心
教材的整体设计要体现内容领域的核心。《标准》在设计思路中指出了“数与代数”、“图形与几何”、“统计与概率”三个内容领域的核心词:数感、符号意识、运算能力、模型思想;空间观念、几何直观、推理能力;数据分析观念。它们是义务教育阶段数学课程内容的核心,也是教材的主线。因此,教材应当围绕这些核心内容进行整体设计和编排。
例如,在方程、不等式和函数的各部分内容编排中,应整体考虑模型思想的体现,突出建立模型、求解模型的过程。
再例如,推理能力包括合情推理和演绎推理,无论是“数与代数”、“图形与几何”还是“统计与概率”的内容编排中,都要尽可能地为学生提供观察、操作、归纳、类比、猜测、证明的机会,发展学生的推理能力。
(2)整体考虑知识之间的关联
教材的整体设计要呈现不同数学知识之间的关联。一些数学知识之间存在逻辑顺序,教材编写应有利于学生感悟这种顺序。一些知识之间存在着实质性的联系,这种联系体现在相同的内容领域,也体现在不同的内容领域。例如:在“数与代数”的领域内,函数、方程、 不等式之间均存在着实质性联系;此外,代数与几何、统计之间也存在着一定的实质性联系。
帮助学生理解类似的实质性联系,是数学教学的重要任务。为此,教材在内容的素材选取、问题设计和编排体系等方面应体现这些实质性联系,展示数学知识的整体性和数学方法的一般性。
(3)重要的数学概念与数学思想要体现螺旋上升的原则
数学中有一些重要内容、方法、思想是需要学生经历较长的认识过程,逐步理解和掌握的,如分数、函数、概率、数形结合、逻辑推理、模型思想等。因此,教材在呈现相应的数学内容与思想方法时,应根据学生的年龄特征与知识积累,在遵循科学性的前提下,采用逐级递进、螺旋上升的原则。螺旋上升是指在深度、广度等方面都要有实质性的变化,即体现出明显的阶段性要求。
例如,函数是“数与代数”的重要内容,也是义务教育阶段学生比较难理解和掌握的数学概念之一,《标准》在三个学段中均安排了与函数关联的内容目标,希望学生能够逐渐加深对函数的理解。因此,教材对函数内容的编排应体现螺旋上升的原则,分阶段逐渐深化。依据内容标准的要求,教材可以将函数内容的学习分为三个主要阶段:
第一阶段,通过一些具体实例,让学生感受数量的变化过程、以及变化过程中变量之间的对应关系,探索其中的变化规律及基本性质,尝试根据变量的对应关系作出预测,获得函数的感性认识。
第二阶段,在感性认识的基础上,归纳概括出函数的定义,并研究具体的函数及其性质,了解研究函数的基本方法,借助函数的知识和方法解决问题等,使得学生能够在操作层面认识和理解函数。
第三阶段,了解函数与其他相关数学内容之间的联系(例如与方程之间、不等式之间的联系),使得学生能够一般性地了解函数的概念。
(4)整体性体现还应注意以下几点
配置习题时应考虑其与相应内容之间的协调性。一方面,要保证配备必要的习题帮助学生巩固、理解所学知识内容;另一方面,又要避免配置的习题所涉及的知识超出相应的内容要求。
教材内容的呈现既要考虑不同年龄学生的特点,又要使整套教材的编写体例、风格协调一致。
数学文化作为教材的组成部分,应渗透在整套教材中。为此,教材可以适时地介绍有关背景知识,包括数学在自然与社会中的应用、以及数学发展史的有关材料,帮助学生了解在人类文明发展中数学的作用,激发学习数学的兴趣,感受数学家治学的严谨,欣赏数学的优美。例如,可以介绍《九章算术》、珠算、《几何原本》、机器证明、黄金分割、CT技术、蒲丰投针等。
3. 教材内容的呈现应体现过程性
教材编写不是单纯的知识介绍,学生学习也不是单纯地模仿、练习和记忆。因此,教材应选用合适的学习素材,介绍知识的背景;设计必要的数学活动,让学生通过观察、实验、猜测、推理、交流、反思等,感悟知识的形成和应用。恰当地让学生经历这样的过程,对于他们理解数学知识与方法、形成良好的数学思维习惯和应用意识,提高解决问题的能力有着重要的作用。
(1)体现数学知识的形成过程
在设计一些新知识的学习活动时,教材可以展现“知识背景—知识形成—揭示联系”的过程。这个过程要有利于激发学习兴趣,理解数学实质,发展思考能力,了解知识之间的关联。例如,分数、负数和无理数的引入都可以体现这样的过程。
(2)反映数学知识的应用过程
教材应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现“问题情境─建立模型─求解验证”的过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识。
每一册教材至少应当设计一个适用于“综合与实践”学习活动的题材,这样的题材可以以“长作业”的形式出现,将课堂内的数学活动延伸到课堂外,经历收集数据、查阅资料、独立思考、合作交流、实践检验、推理论证等多种形式的活动。提倡在教材中设计更为丰富的“综合与实践”活动题材,供教师选择。
4. 呈现内容的素材应贴近学生现实
素材的选用应当充分考虑学生的认知水平和活动经验。这些素材应当在反映数学本质的前提下尽可能地贴近学生的现实,以利于他们经历从现实情境中抽象出数学知识与方法的过程。学生的现实主要包含以下三个方面:
(1)生活现实
在义务教育阶段的数学课程中,许多内容都可以在学生的生活实际中找到背景。
第一学段,学生所感知的生活面较窄,从他们身边熟悉的、有趣的事物中选取学习素材,容易激发他们学习数学的兴趣,使他们感受到数学就在自己的身边,也易于他们理解相关的数学知识,体会到数学的作用。
第二学段、第三学段,学生的活动空间有了较大的扩展,他们感兴趣的问题已拓广到客观世界的许多方面,他们逐渐关注来源于自然、社会中更为广泛的现象和问题,对具有一定挑战性的内容表现出更大的兴趣。因此,教材所选择的素材应尽量来源于自然、社会中的现象和问题。如与现实生活有关的图片、图形(照片、简单的模型图、平面图、地图等),以使学生感受到数学的价值和趣味.
(2)数学现实
随着数学学习的深入,学生所积累的数学知识和方法就成为学生的“数学现实”,这些现实应当成为学生进一步学习数学的素材。选用这些素材,不仅有利于学生理解所学知识的内涵,还能够更好地揭示相关数学知识之间的内在关联,有利于学生从整体上理解数学,构建数学认知结构。例如,因式分解知识的引入可以借助整数的分解,平行四边形概念的引入可以借助三角形,等等。
(3)其他学科现实
数学的许多内容与其他学科知识有着密切的联系,随着学生学习的深入,其他学科的知识也就成为学生的“现实”,教材在选择数学学习素材时应当予以关注。
5. 教学内容设计要有一定的弹性
按照《标准》要求,教材的编写要面向全体学生,也要考虑到学生发展的差异,在保证基本要求的前提下,体现一定的弹性,以满足学生的不同需求,使不同的人在数学上得到不同的发展,也便于教师发挥自己的教学创造性。例如:
(1)就同一问题情境提出不同层次的问题或开放性问题。
(2)提供一定的阅读材料,包括史料、背景材料、知识应用等,供学生选择阅读。
(3)习题的选择和编排突出层次性,设置巩固性问题、拓展性问题、探索性问题等;凡不要求全体学生掌握的习题,需要明确标出。
(4)在设计课题学习时,所选择的课题要使所有的学生都能参与,不同的学生可以通过解决问题的活动,获得不同的体验。
(5)编入一些拓宽知识或者方法的选学内容,增加的内容应注重于介绍重要的数学概念、数学思想方法,而不应该片面追求内容的深度、问题的难度、解题的技巧。
(6)设计一些课题和阅读材料,引导学生借助算盘、函数计算器、计算机等工具,进行探索性学习活动。
6. 教材编写要体现可读性
教材应具备可读性,应易于学生接受,激发学生学习兴趣,为学生提供思考的空间。教材可读与否,对不同学段的学生具有不同的标准。因此,教材的呈现应当在准确表达数学含义的前提下,符合学生年龄特征,从而有助于