数学:华东师大版九年级下 272 二次函数的图象与性质(课件)

文档属性

名称 数学:华东师大版九年级下 272 二次函数的图象与性质(课件)
格式 rar
文件大小 3.7MB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2011-01-05 14:47:00

文档简介

课件12张PPT。二次函数y=ax2的
图象和性质xy27.2.1一. 平面直角坐标系:
1. 有关概念:x(横轴)y(纵轴)o第一象限第二象限第三象限第四象限Pab(a,b)2. 平面内点的坐标:3. 坐标平面内的点与有序
实数对是:一一对应. 坐标平面内的任意一点M,都有唯一一对
有序实数(x,y)与它对应;任意一对有序实数
(x,y),在坐标平面内都有唯一的点M与它对应.4. 点的位置及其坐标特征:
①.各象限内的点:
②.各坐标轴上的点:
③.各象限角平分线上的点:
④.对称于坐标轴的两点:
⑤.对称于原点的两点:xyo(+,+)(-,+)(-,-)(+,-)P(a,0)Q(0,b)P(a,a)Q(b,-b)M(a,b)N(a,-b)A(x,y) B(-x,y)C(m,n)D(-m,-n) 函数图象画法列表描点连线00.2512.2540.2512.254 描点法用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结用光滑曲线连结时要
自左向右顺次连结0-0.25-1-2.25-4-0.25-1-2.25-4注意:列表时自变量
取值要均匀和对称。00.524.580.524.58列表参考00.524.580.524.5801.5-61.5-6二次函数y=ax2的图象形如物体抛射时
所经过的路线,我们把它叫做抛物线。这条抛物线关于y轴
对称,y轴就是它的
对称轴。 这条抛物线关于y轴
对称,y轴就是它的
对称轴。 这条抛物线关于y轴
对称,y轴就是它的
对称轴。 对称轴与抛物线的交点
叫做抛物线的顶点。对称轴与抛物线的交点
叫做抛物线的顶点。对称轴与抛物线的交点
叫做抛物线的顶点。(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0。当x=0时,最大值为0。二次函数y=ax2的性质1、顶点坐标与对称轴2、位置与开口方向3、增减性与极值2、练习23、想一想

在同一坐标系内,抛物线y=x2与抛物线
y= -x2的位置有什么关系? 如果在同一坐标系内
画函数y=ax2与y= -ax2的图象,怎样画才简便?

4、练习4动画演示当a>0时,在对称轴的
左侧,y随着x的增大而
减小。 当a>0时,在对称轴的
右侧,y随着x的增大而
增大。 当a<0时,在对称轴的
左侧,y随着x的增大而
增大。 当a<0时,在对称轴的
右侧,y随着x的增大而
减小。 1、抛物线y=ax2的顶点是原点,对称轴是y轴。2、当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展。3、当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。 当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。二次函数y=ax2的性质2、根据左边已画好的函数图象填空:
(1)抛物线y=2x2的顶点坐标是 ,
对称轴是 ,在 侧,
y随着x的增大而增大;在 侧,
y随着x的增大而减小,当x= 时,
函数y的值最小,最小值是 ,抛物
线y=2x2在x轴的 方(除顶点外)。(2)抛物线 在x轴的 方(除顶点外),在对称轴的
左侧,y随着x的 ;在对称轴的右侧,y随着x的
,当x=0时,函数y的值最大,最大值是 ,
当x 0时,y<0.(0,0)y轴对称轴的右对称轴的左00上下增大而增大增大而减小01、已知抛物线y=ax2经过点A(-2,-8)。
(1)求此抛物线的函数解析式;
(2)判断点B(-1,- 4)是否在此抛物线上。
(3)求出此抛物线上纵坐标为-6的点的坐标。解(1)把(-2,-8)代入y=ax2,得
-8=a(-2)2,解出a= -2,所求函数解析式为
y= -2x2.(2)因为 ,所以点B(-1 ,-4)
不在此抛物线上。(3)由-6=-2x2 ,得x2=3,
所以纵坐标为-6的点有两个,它们分别是

y=-2x2课件25张PPT。二次函数的图象与性质(2)27.2.2焰火打篮球a顶点坐标对称轴位置开口方向增减性最值a>0a<0(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方( 除顶点外)向上向下当x=0时,ymin=0当x=0时,ymax=0在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 一、回顾:二次函数y=ax2的图象与性质二、 新课活动1 在同一平面直角坐标系画出函数 、 与 的图象. 问题1:观察函数对应值表,你能想象出三个图象之间的关系吗?(与学生分析函数对应值表)观察图象回答下列问题二次函数y=ax2与y=ax2+c的图象有什么关系?问题2:抛物线 , 与 的开
口方向,对称轴,顶点坐标有何异同? 问题3:抛物线 , 与 有什么
关系? 问题4:抛物线 是由抛物线 沿y轴怎样
移动得到的?抛物线 呢?
问题5:你认为是什么决定了会这样平移?
图片图片图片活动2 在同一坐标系中作出下列二次函数:画图观察图象的相互关系观察顶点的变化观察对称轴的变化观察增减性的变化二次函数y=ax2与y=ax2+c的图象有什么关系?二次函数y= ax2+c的图象可以由 y=ax2 的图象上下平移得到:
当c > 0 时 向上平移|c|个单位得到.
当c < 0 时 向下平移|c|个单位得到.函数y=ax2+c
y=ax2开口方向a>0时,向上a<0时,向下对称轴y轴y轴顶点坐标(0,0)(0,c)a>0时,向上a<0时,向下上正下负小结
1.把抛物线 向下平移2个单位,可以得到抛物线 ,再向上平移5个单位,可以得到抛物线 ;
2.抛物线 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y随x的增大而增大, 当x 时, y随x的增大而减小.向下y轴(0,-3)<0>0练习
3.函数y=3x2+5与y=3x2的图象的不同之处是( )
A.对称轴 B.开口方向 C.顶点 D.形状
4.对于函数y= –x2+1,当x 时,函数值y随x的增大而增大;当x 时,函数值y随x的增大而减小;当x 时,函数取得最 值,为 。<0>0=0大0C5.将抛物线 向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 。
6.已知抛物线y=2x2–1上有两点(x1,y1 ) ,(x1,y1 )且x1<x2<0,则y1 y2(填“<”或“>”)
<(0,-2)(0,1)二次函数y=ax2与y=ax2+c的图象有什么关系?二次函数y= ax2+c的图象可以由 y=ax2 的图象上下平移得到,
当c > 0 时 向上平移|c|个单位得到.
当c < 0 时 向下平移|c|个单位得到.函数y=ax2+c
y=ax2开口方向a>0时,向上a<0时,向下对称轴y轴y轴顶点坐标(0,0)(0,c)a>0时,向上a<0时,向下上正下负小结返回返回