本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
3.3 圆周角和圆心角的关系(第一课时)
学习目标:
(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.
学习重点:
圆周角的概念和圆周角定理
学习难点:
圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.
学习方法:
指导探索法.
学习过程:
一、举例:
1、已知⊙O中的弦AB长等于半径,求弦AB所对的圆周角和圆心角的度数.
2、如图,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC
3、如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?
21世纪教育网
4、一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?
5、已知AB为⊙O的直径,AC和AD为弦,AB=2,AC=,AD=1,求∠CAD的度数.
6、如图,A、B、C、D、E是⊙O上的五个点,则图中共有 个圆周角,分别是 .
21世纪教育网
7、如图,已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图3-3-14,若∠A=60°,AB≠AC,则①中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由?
8、已知等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过O2,点C是上任一点(不与A、O2、B重合),连接BC并延长交⊙O2于D,连接AC、AD.求证: .
(1)操作测量:图a)供操作测量用,测量时可使用刻度尺或圆规将图(a)补充完整,并观察和度量AC、CD、AD三条线段的长短,通过观察或度量说出三条线段之间存在怎样的关系?
(2)猜想结论(求证部分),并证明你的猜想;(在补充完整的图(a)中进行证明)21世纪教育网
(3)如图b),若C点是的中点,AC与O1O2相交于E点,连接O1C,O2C.求证:CE2=O1O2·EO2.
二、课外练习:21世纪教育网
1、⊙O的弦AB等于半径,那么弦AB所对的圆周角一定是( ).
(A)30° (B)150° (C)30°或150° (D))60°
2、△ABC中,∠B=90°,以BC为直径作圆交AC于E,若BC=12,AB=12 ,则 的度数为( ).
(A)60° (B)80° (C)100° (D))120°
3、如图,△ABC是⊙O的内接等边三角形,D是AB上一点,AB与CD交于E点,则图中60°的角共有( )个.
(A)3 (B)4 (C)5 (D)6
4、如图,△ABC内接于⊙O,∠OBC=25°,则∠A的度数为( )
(A)70° (B)65° (C)60° (D))50°
5、圆内接三角形三个内角所对的弧长为3:4:5,那么这个三角形内角的度数分别为__________.
6、如图,AB是⊙O的直径,CD⊥AB于D,AD=9cm,DB=4cm,求CD和AC的长.
7、已知:如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于E,AF⊥BD于F,延长AF交BC于G.求证:
21世纪教育网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
3.3 圆周角和圆心角的关系(第二课时)
学习目标:
掌握圆周角定理几个推论的内容,会熟练运用推论解决问题.
学习重点:
圆周角定理几个推论的应用.
学习难点:
理解几个推论的”题设”和”结论”.
学习方法:
指导探索法.
学习过程:
一、举例:
【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?
【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.
【例3】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.
(1)求证:AC⊥OD;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
[来源:21世纪教育网]
【例4】四边形ABCD中,AB∥DC,BC=b,AB=AC=AD=a,如图3-3-15,求BD的长.
【例5】如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB2.
(1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB2是否成立?请说明理由.21世纪教育网
(2)如图3,若两弦AC、BD的延长线交于P点,则AB2= .参照(1)填写相应结论,并证明你填写结论的正确性.
二、练习:
1.在⊙O中,同弦所对的圆周角( )
A.相等 B.互补 C.相等或互补 D.都不对
2.如图,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数是( )
A.5对 B.6对 C.7对 D.8对
3.下列说法正确的是( )
A.顶点在圆上的角是圆周角
B.两边都和圆相交的角是圆周角
C.圆心角是圆周角的2倍
D.圆周角度数等于它所对圆心角度数的一半21世纪教育网
4.下列说法错误的是( )
A.等弧所对圆周角相等 B.同弧所对圆周角相等[来源:21世纪教育网]
C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等
5.如图4,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD= .
6.如图5,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON= .
7.如图6,AB是⊙O的直径,=,∠A=25°,则∠BOD= .
8.如图7,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M.若∠BAC=60°,∠ABC=50°,则∠CBM= ,∠AMB= .21世纪教育网
9.⊙O中,若弦AB长2cm,弦心距为cm,则此弦所对的圆周角等于
10.如图8,⊙O中,两条弦AB⊥BC,AB=6,BC=8,求⊙O的半径.
11.如图9,AB是⊙O的直径,FB交⊙O于点G,FD⊥AB,垂足为D,FD交AG于E.求证:EF·DE=AE·EG.
12.如图,AB是半圆的直径,AC为弦,OD⊥AB,交AC于点D,垂足为O,⊙O的半径为4,OD=3,求CD的长.
13.如图,⊙O的弦AD⊥BC,垂足为E,∠BAD=∠α,∠CAD=∠β,且sinα=,cosβ=,AC=2,求(1)EC的长;(2)AD的长.
14.如图,在圆内接△ABC中,AB=AC,D是BC边上一点.
(1)求证:AB2=AD·AE;
(2)当D为BC延长线上一点时,第(1)小题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由.
15.如图,已知BC为半圆的直径,O为圆心,D是的中点,四边形ABCD对角线AC、BD交于点E.
(1)求证:△ABE∽△DBC;
(2)已知BC=,CD=,求sin∠AEB的值;
(3)在(2)的条件下,求弦AB的长.
16.如图,以△ABC的BC边为直径的半圆交AB于D,交AC于E,过E点作EF⊥BC,垂足为F,且BF:FC=5:1,AB=8,AE=2,求EC的长.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网