本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
28.2与圆有关的位置关系(5)
圆与圆的位置关系
教学目标:
使学生了解圆与圆位置关系的定义,掌握用数量关系来识别圆与圆的位置关系。21世纪教育网
重点难点:
用数量关系识别圆与圆的位置关系是本节课的教学重点,又是本节课的教学难点。
教学过程:
一、认识生活中有关圆与圆的位置关系的一些图形
在现实生活中,圆与圆有不同的位置关系,如下图所示:
圆与圆的位置关系除了以上几种外,还有其他的位置关系吗?我们如何判断圆与圆的位置关系呢?这些问题待学习完这节课后就可以得到解决。
二、用公共点的个数阐述两圆的位置关系
请同学们在纸上画一个圆,把一枚硬币当作另一个圆,在纸上移动这枚硬币,观察两圆的位置关系和公共点的个数。
如图28.2.14(1)、(2)、(3)所示,两个圆没有公共点,那么就说两个圆相离,其中(1)又叫做外离,(2)、(3)又叫做内含。(3)中两圆的圆心相同,这两个圆还可以叫做同心圆。如果两个圆只有一个公共点,那么就说这两个圆相切,如图28.2.14(4)、(5)所示.其中(4)又叫做外切,(5)又叫做内切。如果两个圆有两个公共点,那么就说这两个圆相交,如图28.2.14(6)所示。
三、用数量关系识别两圆的位置关系
思考:如果两圆的半径分别为3和5,圆心距(两圆圆心的距离)为9,你能确定他们的位置关系吗?若圆心距分别为8、6、4、2、1、0时,它们的位置关系又如何呢?
利用以上的思考题让同学们画图或想象,概括出两圆的位置关系与圆心距、两圆的半径具有什么关系。
[来源:21世纪教育网
21世纪教育网
(1)两圆外离;
(2)两圆外切;
(3)两圆外离;
(4)两圆外离;
(5)两圆外离;
为了使学生对两圆的位置关系用数量关系体现有更深刻的理解以及更牢的记忆,教师可有以下数轴的形式让学生加以理解。
要判断两圆的位置关系,要牢牢抓住两个特殊点,即外切和内切两点,当圆心距刚好等于两圆的半径和时,两圆外切,等于两圆的半径差时,两圆内切。若圆心距处于半径和与半径差之间时,两圆相交,大于两圆半径和时,两圆外离,小于两圆半径差时,两圆内含。
四、例题与练习
例1、已知⊙A、⊙B相切,圆心距为10 cm,其中⊙A的半径为4 cm,求⊙B的半径。
分析:两圆相切,有可能两圆外切,也有可能两圆内切,所以⊙B的半径就有两种情况。
解 设⊙B的半径为R.
(1) 如果两圆外切,那么
d=10=4+R,
R=6.
(2) 如果两圆内切,那么
d=|R-4|=10,
R=-6(舍去),R=14.21世纪教育网
所以⊙B的半径为6 cm或14 cm
例2、两圆的半径的比为,内切时的圆心距等于,那么这两圆相交时圆心距的范围是多少?
解:设其中一个圆的半径为,则另一个圆的半径为
因为内切时圆心距等于8
所以
所以
当两圆相交时,圆心距的取值范围是
五、小结
就好象识别点与圆、直线与圆的位置关系一样,这节课我们同样也用数量关系来体现圆与圆的位置关系。在识别圆与圆的位置关系时,关系式比较多,也难于忘记,如果同学们能够掌握老师上课时讲的用数轴来体现圆与圆的位置关系,理解起来就会更深刻,记忆也会更容易。
六、作业21世纪教育网
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
28.2与圆有关的位置关系(1)
点与圆的位置关系
教学目标:
使学生能够用数量关系来判断点与圆的位置关系,掌握不在一条直线上的三点确定一个圆,能画出三角形的外接圆,求出特殊三角形的外接圆的半径,渗透方程思想。
重点难点:
1、重点:用数量关系判断点和圆的位置关系,用尺规作三角形的外接圆,求直角三角形、等边三角形和等腰三角形的半径。
2、难点:运用方程思想求等腰三角形的外接圆半径。21世纪教育网
教学过程:
一、用数量关系来判断点和圆的位置关系
同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;右图是一位运动员射击10发子弹在靶上留下的痕迹。你知道这个运动员的成绩吗?请同学们算一算。(击中最里面的圆的成绩为10环,依次为9、8、…、1环)
这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个点到圆心的距离小于半径。
如图28.2.1,设⊙O的半径为r,A点在圆内,B点在圆上,C点在圆外,那
OA<r, OB=r, OC>r.反过来也成立,即
若点A在⊙O内
若点A在⊙O上
若点A在⊙O外 [来源:21世纪教育网
思考与练习
1、⊙O的半径,圆心O到直线的AB距离。在直线AB上有P、Q、R三点,且有,,。P、Q、R三点对于⊙O的位置各是怎么样的?
2、中,,,,,对C点为圆心,为半径的圆与点A、B、D的位置关系是怎样的?
二、不在一条直线上的三点确定一个圆
问题与思考:平面上有一点A,经过A点的圆有几个?圆心在哪里?平面上有两点A、B,经过A、B点的圆有几个?圆心在哪里?平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?。
21世纪教育网
从以上的图形可以看到,经过平面上一点的圆有无数个,这些圆的圆心分布在整个平面;经过平面上两点的圆也有无数个,这些圆的圆心是在线段AB的垂直平分线上。经过A、B、C三点能否画圆呢?同学们想一想,画圆的要素是什么?(圆心确定圆的位置,半径决定圆的大小),所以关键的问题是定其加以和半径。
如图28.2.4,如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在线段BC的垂直平分线上,此时,这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C三点的圆.
思考:如果A、B、C三点在一条直线上,能画出经过三点的圆吗?为什么?
即有:不在同一条直线上的三个点确定一个圆
也就是说,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。
思考:随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请举例说明。
三、例题讲解
例1、如图,已知中,,若, ,求的外接圆半径。
解:略
例2、如图,已知等边三角形ABC中,边长为,求它的外接圆半径。
解:略
21世纪教育网
例3、如图,等腰中,,,求外接圆的半径。
四、小结
本节课我们学习了用数量关系判断点和圆的位置关系和不在同一直线上的三点确定一个圆,求解了特殊三角形直角三角形、等边三角形、等腰三角形的外接圆半径,在求解等腰三角形外接圆半径时,运用了方程的思想,希望同学们能够掌握这种方法,领会其思想。21世纪教育网
五、作业
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
28.2与圆有关的位置关系(4)
切线(2)
【教学目标】:
通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。
【重点难点】:
1、重点:切线长定理及其应用,三角形的内切圆的画法和内心的性质。
2、难点:三角形的内心及其半径的确定。
【教学过程】:
一、巩固上节课学习的知识
请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)
你能说明以下这个问题?
如右图所示,PA是的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?
解:连结OE,过O作,垂足为F点
因为 AB是⊙O的切线21世纪教育网
所以
又因为PA是的平分线,
所以
所以 AC是⊙O的切线
二、探究从圆外一点引圆的两条切线,切线长相等以及这一点与圆心的连线平分两条切线的夹角
问题1、从圆外一点可以作圆的几条切线?请同学们画一画。
2、请问:这一点与切点的两条线段的长度相等吗?为什么?
3、切线长的定义是什么?
通过以上几个问题的解决,使同学们得出以下的结论:
从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线
平分两条切线的夹角。
在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。
三、对以上探究得到的知识的应用
思考:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知,,(1)求的周长;(2)求的度数。
解:(1)连结PA、PB、EF是⊙O的切线[来源:21世纪教育网
所以,,
所以的周长
(2)因为PA、PB、EF是⊙O的切线
所以,,
,
所以
所以
四、三角形的内切圆
想一想,发给同学们如图28.2.11所示三角形纸片,请在它的上面截一个面
积最大的圆形纸片?
提示:画圆必须确定其位置和大小,即确定圆的圆心和半径,而要截出的圆
的面积最大,这个圆必须与三角形的三边都相切。
如图28.2.12,在△ABC中,如果有一圆与AB、AC、BC都相切,那么该圆的圆心到这三角形的三边的距离都相等,如何找到这个圆的圆心和半径呢?21世纪教育网
等待同学们想过之后再阐述如何确定圆心和半径。
我们知道,角平分线上的点到角的两边距离相等,反过来,到角两边距离相等
的点在这个角的平分线上。因此,圆心就是△ABC的角平分线的交点,而半径是这
个交点到边的距离。
根据上述所阐述的,同学们只要分别作、的平分线,他们的交
点I就是圆心,过I点作,线段ID的长度就是所要画的圆的半径,因此以I点为圆心,ID长为半径作圆,则⊙I必与△ABC的三条边都相切。
与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三条内角平分线的交点,它到三角形三边的距离相等。
问题:三角形的内切圆有几个?一个圆的外切圆三角形是否只有一个?21世纪教育网
例题:△ABC 的内切圆⊙O 与AC、AB、BC分别相切于点D、E、F,且AB=5厘米,BC=9厘米,AC=6厘米,求AE、BF和CD的长。
解:因为⊙O 与△ABC 的三边都相切
所以,,
设。,
则[来源:21世纪教育网]
解得:,,
即,,
五、课堂练习
六、小结
1、切线长定理:从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心连线平分两条切线的夹角。
2、三角形的内切的内心是三角形三条角平分线的交点,它到三角形三条边的距离相等。
七、作业
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
28.2与圆有关的位置关系(2)
直线与圆的位置关系
教学目标:
使学生掌握直线与圆的位置关系,能用数量来判断直线与圆的位置关系。
重点难点:[21世纪教育网
用数量关系(圆心到直线的距离)判断直线与圆的位置关系即是教学重点又是教学难点。
教学过程:
一、用移动的观点认识直线与圆的位置关系
1、同学们也许看过海上日出,如右图中,如果我们把太阳看作一个圆,那么太阳在升起的过程中,它和海平面就有右图中的三种位置关系。21世纪教育网
2、请同学在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线与圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?21世纪教育网
二、数量关系判断直线与圆的位置关系21世纪教育网
从以上的两个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:
如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离,如图28.2.6(1)所示. 如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,如图28.2.6(2)所示.此时这条直线叫做圆的切线,这个公共点叫做切点.如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,如图28.2.6(3)所示.此
时这条直线叫做圆的割线.
[来源:21世纪教育网]
如何用数量来体现圆与直线的位置关系呢?
如上图,设⊙O的半径为r,圆心O到直线l的距离为d,从图中可以看出:
若 直线l与⊙O相离;
若 直线l与⊙O相切;
若 直线l与⊙O相交;
所以,若要判断圆与直线的位置关系,必须对圆心到直线的距离与圆的半径进行比较大小,由比较的结果得出结论。
三、练习与例题
练习1、已知圆的半径等于5厘米,圆心到直线l的距离是:(1)4厘米;(2)5厘米;(3)6厘米.直线l和圆分别有几个公共点?分别说出直线l与圆的位置关系。
练习2、已知圆的半径等于10厘米,直线和圆只有一个公共点,求圆心到直线的距离.
练习3、如果⊙O的直径为10厘米,圆心O到直线AB的距离为10厘米,那么⊙O 与直线A B有怎样的位置关系?
例题:例1、如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于点C、D,大圆的弦EF与小圆相切于点C,ED交小圆于点G,
设大圆的半径为,,求小圆的半径和EG的长度。
解:连结CG
因为EF切小圆于C点,AB为大圆的直径
所以,
所以。
所以
因为CD是小圆的直径
所以,在和中
因为,
所以
所以,即,
三、小结
本节课我们学习了直线与圆的位置关系,当我们判断直线与圆的位置关系时,应该用数量关系(圆心到直线的距离)来体现,即上面讲解的圆心到直线的距离与圆的半径进行比较大小,从而断定是哪种关系。
若 直线l与⊙O相离;
若 直线l与⊙O相切;
若 直线l与⊙O相交;
四、作业
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
28.2与圆有关的位置关系(3)
切线(一)
教学目标:
1、使学生掌握切线的识别方法,并能初步运用它解决有关问题;
2、通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力;
教学重点和难点:
切线的识别方法是重点;而方法的理解及实际运用是难点.
教学过程设计:
一、从学生已有的知识结构提出问题
1、复习、回顾直线与圆的三种位置关系.
2、根据几何画板所示图形,请学生判断直线和圆的位置关系.
学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出问题:如何界定直线与圆是否只有一个公共点?(画板演示)
教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切线的其它方法.(板书课题)
二、师生共同探讨、发现结论
1、由上面的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线.
2、当然,我们还可以由上节课所学的用圆心到直线的距离与半径之间的关系来判断直线与圆是否相切,即:当时,直线与圆的位置关系是相切.以此作为识别切线的方法2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线.
21世纪教育网
3、继续观察复习时的图形,如图,圆心到直线的距离等于半径,直线是⊙O的切线,这时我们来观察直线与⊙O的位置,可以发现:(1)直线经过半径的外端点;(2)直线垂直于半径.这样我们就得到了从位置上来判断直线是圆的切线的方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线.
4、思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?
请学生回顾作图过程,切线是如何作出来的 它满足哪些条件 引导学生总结出:①经过半径外端;②垂直于这条半径.
请学生继续思考:这两个条件缺少一个行不行 (学生画出反例图)21世纪教育网
(图1) (图2) (图3)
图(1)中直线经过半径外端,但不与半径垂直; 图(2)中直线与半径垂直,但不经过半径外端. 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
最后引导学生分析,方法3实际上是从前一节所讲的“圆心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式. 21世纪教育网
三、应用定理,强化训练
例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?
例2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D.BD是⊙O的切线吗?为什么?
分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BD⊥OD,因OA=OD,BAD=B,易证BD⊥OD.
教师板演,给出解答过程及格式.
21世纪教育网
课堂练习:课本练习1-4
四、小结 提问:这节课主要学习了哪些内容 需要注意什么问题
在学生回答的基础上,教师总结: 主要学习了切线的识别方法,着重分析了方法3成立的条件,在应用方法3时,注重两个条件缺一不可.
识别一条直线是圆的切线,有三种方法:
(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;
(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线, 21世纪教育网
说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2).
五、布置作业
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网