数学:人教版九年级下 282 解直角三角形(教案) 人教版

文档属性

名称 数学:人教版九年级下 282 解直角三角形(教案) 人教版
格式 rar
文件大小 209.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2011-01-05 19:03:00

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
28.2解直角三角形
【探究目标】
1.目的与要求 能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题.
2.知识与技能 能根据直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的知识解决有关的实际问题.
3.情感、态度与价值观 通过解直角三角形的应用,培养学生学数学、用数学的意识和能力,激励学生多接触社会、了解生活并熟悉一些生产和生活中的实际事物.
【探究指导】
教学宫殿
在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.
解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如下图:
角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;
边角关系:锐角三角函数,即
解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.
用解直角三角形的知识解决实际问题的基本方法是:
把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.
借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.
当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.
在解直角三角形的过程中,常会遇到近似计算,如没有特殊要求外,边长保留四个有效数字,角度精确到1′.
例1 在△ABC中,∠C=90°,根据下列条件解直角三角形.
(1)c=10,∠B=45°,求a,b,∠A;
(2),求c,∠A,∠B
思路与技巧 求解直角三角形的方法多种多样,如(1)可以先求a或b,也可以先求∠A,依据都是直角三角形中的各元素间的关系,但求解时为了使计算简便、准确,一般尽量选择正、余弦,尽量使用乘法,尽量选用含有已知量的关系式,尽量避免使用中间数据.
解答 (1)∠A=90°-45°=45°
(2)
所以
例2 如图,CD是Rt△ABC斜边上的高,,,求AC,AB,∠A,∠B(精确到1′).
思路与技巧 在Rt△ABC中,仅已知一条直角边BC的长,不能直接求解.注意到BC和CD在同一个Rt△BCD中,因此可先解这个直角三角形.
解答 在Rt△BCD中
用计算器求得 ∠B=54°44′
于是∠A=90°-∠B=35°16′
在Rt△ABC中,
例3 气象台测得台风中心在某港口A的正东方向400km处,正在向正西北方向转移,距台风中心300km的范围内将受其影响,问港口A是否会受到这次台风的影响
思路与技巧 如图19—48,就是要求出A到台风移动路线BC的距离是否大于300km,Rt△ABC中,∠ACB=90°,∠ABC=45°,AB=400km,是AC可求.21世纪教育网
解答 在Rt△ABC中,
由于
所以AC=AB·sin∠ABC=400×sin45°21世纪教育网
所以港口A将受到这次台风的影响.
例4 如图,两幢建筑物的水平距离为56.5m,从较高的建筑物的顶部看较低的建筑物的底部的俯角是42°,从较低的建筑物的顶部看较高建筑物顶部的仰角是22°,求这两幢建筑物的高度(精确到0.1m).
思路与技巧 如图,AB、CD表示两幢建筑物,AB⊥BD,CD⊥BD,BD=56.5m,根据俯角、仰角的意义,∠DAE=42°,∠ACF=22°,于是Rt△ABD、Rt△ACF都可解.
解答 在Rt△ABD中,
∠ADB=∠DAE=42°
BD=56.5(m)
AB=BD·tan∠ADB
=56.5×tan42°
≈50.9(m)
在Rt△ACF中,
AF=CF·tan∠ACF
=56.5×tan22°
≈22.8(m)
所以CD=AB-AF
=28.1(m)
答:两幢建筑物的高度分别为50.9m,28.1m
例5 如图,沿水库拦水坝的背水坡,将坝顶加宽2m,坡度由原来的1:2改为1:2.5,已知坝高6m,坝长50m求:
(1)加宽部分横断面AFEB的面积;
(2)完成这一工程需要多少土方
思路与技巧 只须求出梯形AFEB的下底EB的长,作AG⊥BC,FH⊥EB,垂足分别为G、H,根据坡度的意义,可以求出坡AB、坡EF的水平长度.
解答 (1)作AG⊥BC,FH⊥EB,垂足分别为G、H,由题意得
HG=AF=2(m).AG=FH=6(m)
在Rt△ABG中,因为
所以BG=2×6=12(m)
在Rt△FEH中,因为[来源:21世纪教育网
所以EH=2.5×6=15(m)
所以EB=EH+HG-BG=15+2-12=5(m)
所以
答:加宽部分横断面AFEB的面积为,完成这一工程需要1050方土.
例6 海上有两条船,甲船在乙船的正南方向,甲船以每小时40海里的速度沿北偏东60°方向航行,乙船沿正东方向以每小时20海里的速度航行,问两船会不会相撞 为什么
思路与技巧 根据题意画出图形,如图19—51,可知甲、乙两船的路线可能会成为直角三角形中60°所对的直角边和斜边,两船同时出发,在相同的时间内所走路程的比如果正好等于60°的正弦就会相撞,否则不会.
解答 如图,因为乙船的速度为每小时20海里,甲船的速度为每小时40海里,所以乙船与甲船所走路程的比为1:2.

所以不会发生相撞.
例7 某市为改变城市交通状况,在大街拓宽工程中,要伐掉一棵树AB.在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在某工人站在离B点3m远的D点测得树的顶部A点的仰角为60°,树的底部B的仰角为30°,如图19—52,问距离B点8m远的保护物是否在危险区内
思路与技巧 本题的实质是要计算大树的高度,如果大于8m,说明保护物在危险区内,否则不在.由于大树不在哪一个直角三角形中,根据条件,过C作CE⊥AB,则可把AB放在Rt△ACE和Rt△BCE中进行求解.
解答 过C作CE⊥AB,垂足为E.
由题意可知,CE=DB=3m
在Rt△CEB中,
在Rt△ACE中,
所以AB=AE+BE=5.196+1.732=6.928(m)<8(m)
所以距离B点8m远的保护物不在危险区域内.21世纪教育网
【探究活动】
提出问题 运用解直角三角形的知识可以解斜三角形(锐角三角形或钝角三角形)吗 21世纪教育网
探究准备 锐角△ABC(已知b,a和∠C).钝角△ABC(已知∠A,c,∠B)(∠A,∠B,∠C的对边为a,b,c)如图.
探究过程 直角三角形中的边边关系、角角关系、边角关系是解直角三角形的依据,它们只有在直角三角形中才成立,因此要想用它们来解斜三角形,必须把斜三角形转化为直角三角形,转化的方法一般是作高,如图19—53甲可以作AD⊥BC于D,这样构造了两个直
角三角形Rt△ABD和Rt△ACD,Rt△ACD中,CD=cos∠C,AD=sin∠C,因为BC=a,所以BD=-cos∠C,在Rt△ABD中,,得出∠B,进而求出∠A=180°-∠B-∠C,
同样方法,图乙中,可以过C作CD⊥AB于D,先解Rt△ACD.再解Rt△CDB.
探究评析 “化斜为直”是运用解直角三角形的知识解斜三角形的根本方法,其做法是通过作斜三角形的一条高,把斜三角形化为两个直角三角形,再根据条件分别在两个直角三角形中做文章.
例8 如图,公路上A、B两处相距lkm,测得城镇C在A处的北偏东35°方向,在B处的北偏西40°方向.求城镇C到A处、B处的距离分别是多少
思路与技巧 弄清楚两个方向角是解决问题的第一步,根据题意∠1=35°,∠2=40°,AB=lkm,发现△ABC不是直角三角形,故通过“化斜为直”转化,作CD⊥AB于D,如图19—55,则∠ACD=∠l=35°,∠BCD=∠2=40°,但是Rt△ACD与Rt△BCD都无法直接求解,因而可利用CD是这两个直角三角形的公共边以及AD+DB=AB=lkm的条件,设法列方程求解.
解答 作CD⊥AB,垂足为D,设CD=x
则在Rt△ACD中,
AD=x·tan∠ACD=x·tan35°
在Rt△CDB中,
BD=x·tan∠BCD=x·tan40°
因为AD+BD=AB=1
所以x(tan35°+tan40°)=1
x=1÷(tan35°+tan40°)≈0.6496(km)
于是
答:城镇C到A处的距离约93km,到B处的距离约是0.848km.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课题 28.2 解直角三角形(一)

一、教学目标
1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.
2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
3.渗透数形结合的数学思想,培养学生良好的学习习惯.
二、教学重点、难点
1.重点:直角三角形的解法.
2.难点:三角函数在解直角三角形中的灵活运用.
三、教学步骤
(一)复习引入

1.在三角形中共有几个元素?

2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?21世纪教育网
(1)边角之间关系
如果用表示直角三角形的一个锐角,那上述式子就可以写成.
(2)三边之间关系
a2 +b2 =c2 (勾股定理)
(3)锐角之间关系∠A+∠B=90°.
以上三点正是解直角三角形的依据,通过复习,使学生便于应用.
(二)教学过程
1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.

2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).

3.例题

例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,
a=,解这个三角形.

解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.

解 ∵tanA===


∴C=2b=
例 2在Rt△ABC中, ∠B =35,b=20,解这个三角形.
引导学生思考分析完成后,让学生独立完成
在学生独立完成之后,选出最好方法,教师板书.

完成之后引导学生小结“已知一边一角,如何解直角三角形?”

答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底
注意:例1中的b和例2中的c都可以利用勾股定理或其它三角函数来计算,但计算出的值可能有些少差异,这都是正常的。
4.巩固练习
P91
说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.
(四)总结与扩展
1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.
2.出示图表,请学生完成
a b c A B
1 √ √ 21世纪教育网
2 √ √
3 √ b=a cotA √21世纪教育网
4 √ b=a tanB √
5 √ √
6 a=b tanA √ √
7 a=b cotB √ √
8 a=c sinA b=c cosA √ √
9 a=c cosB b=c sinB √ √
10 不可求 不可求 不可求 √ √
注:上表中“√”表示已知。

四、布置作业
课题 28.2 解直角三角形(二)
一、教学目标
1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2、逐步培养学生分析问题、解决问题的能力.
3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识
二、教学重点、难点
重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
难点:实际问题转化成数学模型
三、教学过程
(一)复习引入
1.直角三角形中除直角外五个元素之间具有什么关系?请学生口答.
2、在中Rt△ABC中已知a=12 ,c=13 求角B应该用哪个关系?请计算出来。
(二)实践探索
要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)
(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角等于多少(精确到1o) 这时人是否能够安全使用这个梯子
引导学生先把实际问题转化成数学模型
然后分析提出的问题是数学模型中的什么量
在这个数学模型中可用学到的什么知识来求
未知量?
几分钟后,让一个完成较好的同学示范。
(三)教学互动
例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置 这样的最远点与P点的距离是多少 (地球半径约为6 400 km,结果精确到0. 1 km)
分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.
如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船
观测地球时的最远点. 弧PQ的长就是地面上P, Q两点间的距离.为计算弧PQ的长需先求出(即)
解:在上图中,FQ是⊙O的切线,是直角三角形,
弧PQ的长为
由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离
P点约2 009. 6 km.
(四)巩固再现
P93 1,P96 1
四、布置作业
P96 2,3
课题 28.2 解直角三角形(三)
一、教学目标
1、使学生了解什么是仰角和俯角
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、巩固用三角函数有关知识解决问题,学会解决观测问题.
二、教学重点、难点
重点:用三角函数有关知识解决观测问题
难点:学会准确分析问题并将实际问题转化成数学模型
三、教学过程
(一)复习引入
平时我们观察物体时,我们的视线相对于水平线来说可有几种情况?
(三种,重叠、向上和向下)
结合示意图给出仰角和俯角的概念
(二)教学互动
例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)
分析:在中,,.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
解:如图, ,,
答:这栋楼高约为277.1m.
(三)巩固再现
1、为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米).
2、在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).
3、上午10时,我军驻某海岛上的观察所A发现海上有一艘敌军舰艇正从C处向海岛驶来,当时的俯角,经过5分钟后,舰艇到达D处,测得俯角。已知观察所A距水面高度为80米,我军武器射程为100米,现在必须迅速计算出舰艇何时驶入我军火力射程之内,以便及时还击。
解:在直角三角形ABC和直角三角形ABD中,我们可以分别求出:
(米)
(米)
(米)
舰艇的速度为(米/分)。设我军火力射程为米,现在需算出舰艇从D到E的时间(分钟)
我军在12.5分钟之后开始还击,也就是10时17分30秒。
4、小结:谈谈本节课你的收获是什么?
四、布置作业
P101 7、8
21世纪教育网
课题 28.2解直角三角形(四)
一、教学目标
1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、巩固用三角函数有关知识解决问题,学会解决方位角问题.
二、教学重点、难点
重点:用三角函数有关知识解决方位角问题
难点:学会准确分析问题并将实际问题转化成数学模型
三、教学过程
(一)复习引入
1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。
2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线
(二)教学互动
例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,解:如图, 在中,
在中, .
,
因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.海轮所在的B处距离灯塔P有多远(精确到0.01海里)
(三)巩固再现
1、P95 1
2、上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).
3、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
四、布置作业
课题 28.2 解直角三角形(五)
一、教学目标
1、巩固用三角函数有关知识解决问题,学会解决坡度问题.
2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.
3、培养学生用数学的意识,渗透理论联系实际的观点.
二、教学重点、难点
重点:解决有关坡度的实际问题.
难点:理解坡度的有关术语.
三、教学过程
(一)复习引入
1.讲评作业:将作业中学生普遍出现问题之处作一讲评.
2.创设情境,导入新课.
例 同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).[来源:21世纪教育网
同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚.这时,教师应根据学生想学的心情,及时点拨.
(二)教学互动
通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义.
1. 坡度与坡角

结合图6-34,教师讲述坡度概念,并板书:坡面的铅直高度h和水平宽度的比叫做坡度(或叫做坡比),一般用i表示。即i=,常写成i=1:m的形式如i=1:2.5
把坡面与水平面的夹角α叫做坡角.
引导学生结合图形思考,坡度i与坡角α之间具有什么关系?
答:i==tan
这一关系在实际问题中经常用到,教师不妨设置练习,加以巩固.

练习(1)一段坡面的坡角为60°,则坡度i=______;
______,坡角______度.
为了加深对坡度与坡角的理解,培养学生空间想象力,教师还可以提问:
(1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系?举例说明.
(2)坡面水平宽度一定,铅直高度与坡度有何关系,举例说明.
答:(1)
如图,铅直高度AB一定,水平宽度BC增加,α将变小,坡度减小,
因为 tan=,AB不变,tan随BC增大而减小
(2)与(1)相反,水平宽度BC不变,α将随铅直高度增大而增大,tanα
也随之增大,因为tan=不变时,tan随AB的增大而增大
2.讲授新课
引导学生回头分析引题,图中ABCD是梯形,若BE⊥AD,CF⊥AD,梯形就被分割成Rt△ABE,矩形BEFC和Rt△CFD,AD=AE+EF+FD,AE、DF可在△ABE和△CDF中通过坡度求出,EF=BC=6m,从而求出AD.
以上分析最好在学生充分思考后由学生完成,以培养学生逻辑思维能力及良好的学习习惯.
坡度问题计算过程很繁琐,因此教师一定要做好示范,并严格要求学生,选择最简练、准确的方法计算,以培养学生运算能力.
解:作BE⊥AD,CF⊥AD,在Rt△ABE和Rt△CDF中,

∴AE=3BE=3×23=69(m).
FD=2.5CF=2.5×23=57.5(m).
∴AD=AE+EF+FD=69+6+57.5=132.5(m).
因为斜坡AB的坡度i=tan=≈0.3333,
α≈18°26′
答:斜坡AB的坡角α约为18°26′,坝底宽AD为132.5米,斜坡AB的长约为72.7米.
其实这是旧人教版的一个例题,由于新版里这样的内容和题目并不少,但是对于题目里用的术语新版少提,基于学生的接受情况应插讲这一内容。
(三)巩固再现
1、P95 2
2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图6-35阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:
①横断面(等腰梯形)ABCD的面积;
②修一条长为100米的渠道要挖去的土方数.

四、布置作业
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网