数学:北师大版八年级下 13 不等式的解集(教案)

文档属性

名称 数学:北师大版八年级下 13 不等式的解集(教案)
格式 rar
文件大小 50.3KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2011-01-14 17:44:00

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.3 不等式的解集
本节知识点21世纪教育网 知识技能目标 过程性目标21世纪教育网
了解(认识) 理解 掌握 灵活运用 经历(感受) 体验(体会) 探索
第一课时 1.能够根据具体问题中的大小关系了解不等式的意义. ※ ※ ※
2.理解不等式的解、不等式的解集、解不等式这些概念的含义. ※ ※ ※ ※
3.会在数轴上表示不等式的解集. ※ ※ ※ ※ ※ ※
过程与方法(突出课时目标,突出学生主体、突出问题引领,突出目标落实)
教学过程 教学反思
●教学过程一、.创设问题情境,引入新课1、上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质.2、在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗?上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.二、.新课讲授1.现实生活中的不等式.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米?分析:人转移到安全区域需要的时间最少为秒,导火线燃烧的时间为秒,要使人转移到安全地带,必须有:>.解:设导火线的长度应为x cm,根据题意,得> ∴x>5.2.想一想(1)x=5,6,8能使不等式x>5成立吗?(2)你还能找出一些使不等式x>5成立的x的值吗?解:(1)x=5不能使x>5成立,x=6,8能使不等式x>5成立.(2)x=9,10,11…等比5大的数都能使不等式x>5成立.由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?解:可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x>5的解.所以不等式的解不唯一,有无数个解.正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集请大家再类推出解不等式的概念.求不等式解集的过程叫解不等式.3.议一议.请你用自己的方式将不等式x>5的解集和不等式x-5≤-1的解集分别表示在数轴上,并与同伴交流.解:不等式x>5的解集可以用数轴上表示5的点的右边部分来表示(图1-3),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.图1-3不等式x-5≤-1的解集x≤4可以用数轴上表示4的点及其左边部分来表示(图1-4),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.图1-4请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明.解:如x>3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点.x<3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈.x≥3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点.x≤3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点.4.例题讲解投影片(§1.3 A)根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.(1)x-2≥-4;(2)2x≤8(3)-2x-2>-10解:(1)根据不等式的基本性质1,两边都加上2,得x≥-2在数轴上表示为:图1-5(2)根据不等式的基本性质2,两边都除以2,得x≤4在数轴上表示为:图1-6(3)根据不等式的基本性质1,两边都加上2,得-2x>-8根据不等式的基本性质3,两边都除以-2,得x<4在数轴上表示为:图1-7三、.课堂练习1.判断正误:(1)不等式x-1>0有无数个解;(2)不等式2x-3≤0的解集为x≥.2.将下列不等式的解集分别表示在数轴上:(1)x>4;(2)x≤-1;(3)x≥-2;(4)x≤6.1.解:(1)∵x-1>0,∴x>1∴x-1>0有无数个解.∴正确.(2)∵2x-3≤0,∴2x≤3,∴x≤,∴结论错误.2.解:图1-8四、.课时小结本节课学习了以下内容1.理解不等式的解,不等式的解集,解不等式的概念.2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来.Ⅴ.课后作业习题1.3五、.活动与探究小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗?解:不正确.从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x<3.所以不等式x+3<6的解集为x<3,而不是x<2.当然小于2的值都在x<3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部.因此说x<2是不等式x+3<6的解是错误的.●板书设计§1.3 不等式的解集一、1.现实生活中的不等式(水费问题);2.想一想(类推不等式中的有关概念);3.议一议(如何把不等式的解集在数轴上表示出来);4.例题讲解. 二、课堂练习
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
§1.3 不等式的解集
●教学目标
教学知识点 1.能够根据具体问题中的大小关系了解不等式的意义.
2.理解不等式的解、不等式的解集、解不等式这些概念的含义.
3.会在数轴上表示不等式的解集.
能力训练要求 1.培养学生从现实生活中发现并提出简单的数学问题的能力.
2.经历求不等式的解集的过程,发展学生的创新意识.
情感与价值观要求
从实际问题抽象为数学模型,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造.21世纪教育网
●教学重点
1.理解不等式中的有关概念. 2.探索不等式的解集并能在数轴上表示出来.
●教学难点
探索不等式的解集并能在数轴上表示出来.21世纪教育网
●教学过程[来源:21世纪教育网
一、创设问题情境,引入新课
1、向学生提问不等式的基本性质。
2、导入:上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?
二、新课讲授
1.现实生活中的不等式. P10引例(在课本与学生一起解决引例)
2.想一想[21世纪教育网
(1)x=5,6,8能使不等式x>5成立吗?
(2)你还能找出一些使不等式x>5成立的x的值吗?(不等式的解不唯一,有无数个解)
3、不等式的解,不等式的解集,解不等式的概念。
4、议一议.(在数轴上表示不等式的解集)
请你用自己的方式将不等式x>5的解集和不等式x-5≤-1的解集分别表示在数轴上,并与同伴交流.
诠释在数轴上表示不等式的解集的意义
5、例题讲解根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.
(1)x-2≥-4;(2)2x≤8
(3)-2x-2>-10
三、课堂练习 P12随堂练习
四、课时小结
1.理解不等式的解,不等式的解集,解不等式的概念.
2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来.
五、课后作业
六、活动与探究21世纪教育网
小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗?(部分不能代替全部)
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网