16.1分式教案(共4课时)

文档属性

名称 16.1分式教案(共4课时)
格式 rar
文件大小 58.2KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2011-03-07 21:21:00

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第十六章 分式
16.1分式
16.1.1从分数到分式
一、 教学目标
1. 了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件.
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
三、课堂引入
1.让学生填写P2[思考],学生自己依次填出:,,,.
2.学生看P1的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
四、例题讲解
P3例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案] (1)m=0 (2)m=2 (3)m=1
五、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的值为0?
(1) (2) (3)
六、课后练习
1.列代数式表示下列数量关系,并指出哪些是整式?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与y的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
七、答案:
五、1.整式:9x+4, , 分式: , ,
2.(1)x≠-2 (2)x≠ (3)x≠±2
3.(1)x=-7 (2)x=0 (3)x=-1
六、1.18x, ,a+b, ,; 整式:8x, a+b, ;
分式:,
2. X = 3. x=-1
课后反思:
16.1.2分式的基本性质
一、教学目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
1.重点: 理解分式的基本性质.
2.难点: 灵活应用分式的基本性质将分式变形.
三、例、习题的意图分析
1.P5的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.
2.P6的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.
3.P9习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?
2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质.
五、例题讲解
P5例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
P6例3.约分:
[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
P7例4.通分:
[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.
, , , , 。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.
解:= , =,=, = , =。
六、随堂练习
1.填空:
(1) = (2) =
(3) = (4) =
2.约分:
(1) (2) (3) (4)
3.通分:
(1)和 (2)和
(3)和 (4)和
4.不改变分式的值,使下列分式的分子和分母都不含“-”号.
(1) (2) (3) (4)
七、课后练习
1.判断下列约分是否正确:
(1)= (2)=
(3)= 0
2.通分:
(1)和 (2)和
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.
(1) (2)
课后反思:
16、1、2分式的基本性质(二)——约分
教学目标:
1、进一步理解分式的基本性质,并能用其进行分式的约分。
2、了解最简分式的意义,并能把分式化成最简分式。
3、通过思考、探讨等活动,发展学生实践能力和合作意识。
重点:分式的约分。
难点:利用分式的基本性质把分式化成最简分式。
教学过程:
一、预习新知:
1、分式的基本性质的内容是什么?并用式子表示出来。
2、计算: ,运算中应用了什么方法?这个方法的依据是什么?
3、分解因式:(1)x2—y2 、(2)x2+xy 、(3)9a2+6ab+b2 、(4)x2+x-6 。
猜想利用分式的基本性质能对分式进行上面“2”的运算吗?
自主探究:p6的“思考”。
归纳:分式的约分:
最简分式:
二、课堂展示:
1、例1、p6的“例3”
[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式
通过上面的约分,你能说出分式进行约分的关键是什么?
2、例2、约分:
(1)、 (2)、(3) 。
三、随堂练习:
1、p8的“练习”中的第1题。
2、约分:
(1)、(2)、(3)、(4) 。
四、小结
通过本节课的学习,你学到了哪些知识和方法 你还有什么疑问没有解决
五、课后练习:
1、约分:(1)、(2)、 (3)、
(4) 、(5) 。
16、1、2分式的基本性质(三)——通分
教学:
1、了解分式通分的步骤和依据。
2、掌握分式通分的方法。
3、通过思考、探讨等活动,发展学生实践能力和合作意识。
重点:分式的通分。
难点:准确找出不同分母的分式的最简公分母。
教学过程:
一、预习新知:
1、分式的基本性质的内容是什么?并用式子表示出来。
2、计算: ,运算中应用了什么方法?这个方法的依据是什么?
3、计算:(1)n(m+p) (2)2x(x+5) (3)2xy(x—y)
4、猜想:利用分式的基本性质能对不同分母的分式进行通分吗?
自主探究:p7的“思考”。
归纳:分式的通分:
二、课堂展示:
例1、p7的“例4”。
[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.
最简公分母:
通分的关键是准确找出各分式的
例2、分式,,的最简公分母( )
A.(x-1)2 B.(x-1)3 C.(x-1) D.(x-1)2(1-x)3
例3、求分式、、的最简公分母 ,并通分。
三、随堂练习:
p8的“练习”的第2题.
4、 课堂小结
通过本节课的学习,你学到了哪些知识和方法 你还有什么疑问没有解决
5、 课后练习:
1、通分:(1)、 (2) 、(3) 。
2、通分:(1) 、(2) 、(3) 。
3、 分式的最简公分母是( )
A. B. C. D.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网