本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
频率与概率
教学目标
通过本节课教学,使学生能理清频率和概率的关系,并能正确理解概率的意义,增强学生的对立与统一的辩证思想意识.
教学设计
一、问题情境
在日常生活中,我们经常遇到某某事件发生的概率是多少,如2004年2月5日《文汇报》登载的两则消息.
本报讯 记者梁红英报道:2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时投中10注一等奖,独揽48571620元巨额奖金,创下中国彩票史上个人一次性奖额之最.
……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”2004015期开奖号码完全一致.
本报讯 记者江世亮报道:……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此,记者于昨日午夜电话连线采访了本市一位数学建模专家,他说,以他现在不完全掌握的情况来分析,像这名幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗地讲就是接近于零.
对文中的“万亿分之一”我们怎样理解呢?再如:天气预报说“明天降雨的概率是80%,我们明天出门要不要带伞?收音机里广播报道2004年冬某地“流行性感冒的发病率为10%”,我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80%,10%等,我们该作何理解呢?
二、建立模型
为了解决诸如以上的实际问题,我们不妨先从熟悉的频率的概念入手.首先,将全班同学平均分成三组,第一组做掷硬币试验,次数越多越好,观察掷出正面向上的次数,然后把试验结果和计算结果分别填入下表.
表28-1
小组编号 抛掷次数(n) 正面向上的次数(m) 正面向上的频率( )
第二组做抓阄试验.写五个阄,即分别标号为1,2,3,4,5,有放回地抓,每次记录下号数,次数越多越好.不妨统计一下各号数所占频率.
第三组做摸围棋子试验.预先准备黑、白围棋子若干,然后给该组学生黑子30粒,白子10粒,让该组学生有放回地摸,次数为100次,每次摸出1粒,并记录下每次摸到的棋子的颜色,求出白子出现的频率.
试验结束,让各组学生回答试验结果.第一组正面向上的频率必然接近,第二组结果肯定是每个号出现的频率接近,而第三组结果肯定位于附近.各组学生所得结果可能大于预定数,也可能小于预定数,但都比较接近.
让学生讨论:出现与上述结果比较接近的数字受何因素影响?
(学生思考,讨论,教师投影以下表格)
历史上有些学者还做了成千上万次掷硬币的试验,结果如下表所示:
表28-2
试验者 抛掷次数(n) 正面向上的次数(m) 正面向上的频率( )
棣莫佛 2048 1061 0.5181
蒲 丰 4040 2048 0.5069
费 勒 10000 4979 0.4979
皮尔逊 12000 6019 0.5016
皮尔逊 24000 12012 0.5005
观察上表后,引导学生总结:
在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度的越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.
通过三组试验,我们可以发现:虽然,,三个数值不等,但是三个试验存在共性,即随机事件的频率随试验次数的增加稳定在某一数值附近.同时还可看出,不同的随机事件对应的数值可能不同.我们就用这一数值表示事件发生的可能性大小,即概率.(引出概率定义)
定义可采用学生口述、教师补充的方式,然后可以投影此定义:一般地,在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆度幅度越来越小,这时就把这个常数叫作事件A的概率,记为P(A).
学生可考虑如下问题:(1)概率P(A)的取值范围是什么?
(2)必然事件、不可能性事件的概率各是多少?
(3)频率和概率有何关系?
其中重点是问题(3),应启发、引导学生总结出:在大量重复试验的前提下,频率可以近似地称为这个事件的概率,而概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小.
为加深对二者关系的理解,可以进行如下类比:给定一根木棒,谁都不怀疑它有“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”值.这里测量值就像本节中的频率,“客观”长度就像概率.
概率的这种定义叫作概率的统计定义.在实践中,经常采用这种方法求事件的概率.
三、解释应用
[例 题]
1. 把第三组试验中的黑棋子减少10粒,即20粒黑子,10粒白子,那么摸到黑子的概率约为多少?
学生通过多次试验,可以发现此概率约为.
2. 为确定某类种子的发芽率,从一批种子中抽出若干批做发芽试验,其结果如下:
表28-3
种子粒数(n) 25 70 130 700 2000 3000
发芽粒数(m) 24 60 116 639 1806 2713
发芽率( ) 0.96 0.857 0.892 0.913 0.903 0.904
从以上的数据可以看出,这类种子的发芽率约为0.9.
[练 习]
某射击手在同一条件下进行射击,结果如下:
表28-4
射击次数(n) 10 20 50 100 200 500
击中靶心次数(m) 8 19 44 92 178 455
击中靶心频率( )
(1)计算表中击中靶心的各个频率.
(表中各频率分别为0.8,0.95,0.88,0.92,0.89,0.91)
(2)这个射手射击一次,击中靶心的概率约是多少?
(由此(1)可知,这个射手射击一次,击中靶心的概率约是0.9)
四、拓展延伸
“某彩票的中奖概率为”是否意味着买1000张彩票就一定能中奖?
从概率的统计定义出发,我们先来考虑此题的简化情形:在投掷一枚均匀硬币的随机试验中,正面出现的概率是,这是否意味着投掷2次硬币就会出现1次正面呢?
根据经验,我们投掷2次硬币有可能1次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,如掷10000次硬币,则出现正面的次数约为5000次.
买1000张彩票相当于做1000次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以“彩票中奖概率为”并不意味着买1000张彩票就一定能中奖.只有当所买彩票的数量n非常大时,才可以将大量重复买彩票这个试验看成中奖的次数约为(比如说买1000000张彩票,则中奖的次数约为1000),并且n越大,中奖次数越接近于.
由此我们可以说,对于小概率事件,从理论上来讲,发生的可能性很小,甚至在一定条件下可能不会发生.但是,实际上小概率事件仍有发生的可能,如本节开头提到的万亿分之一的概率事件就发生了.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网