第(8)课时: 课题:不等式(组)的应用
复习目标:利用不等式的性质解决方案设计等实际问题。
基础回顾 范例尝试 巩固提高
基础训练:(1)、已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为a,则a的取值范围是________.2、(2010·温州)某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.3、直线y=kx+b与两坐标轴的交点如图所示,当y<0时,x的取值范围是A.x>2 B.x<2 C.x>-1 D.x<-1 例1、(2010·山西)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7 600元且不高于8 000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?例2、(2010·哈尔滨)君实机械厂为青扬公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B种产品多2件,甲车间3天生产的A种产品与乙车间4天生产的B种产品数量相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)君实机械厂生产的A种产品的出厂价为每件200元,B种产品的出厂价为每件180元.现青扬公司需一次性购买A、B两种产品共80件,君实机械厂甲、乙两车间在没有库存的情况下只生产8天,若青扬公司按出厂价购买A、B两种产品的费用超过15 000元而不超过15 080元,请你通过计算为青扬公司设计购买方案. 1、(2010·莱芜)为打造“书香校园”,某学校计划用不超过1 900本科技类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?2、某市市政公司为绿化一片绿化带,计划购买甲、乙两种树苗共1000株,单价分别为60元、80元,其成活率分别为90%、95%(1)若购买树苗共用68000元,求甲、乙两种树苗各多少株?(2)若希望这批树苗的成活率不低于93%,且购买树苗的费用最低,应如何选购树苗?
2、基础知识:利用列不等式组解决问题的方法步骤与列一元一次方程组解应用题的步骤类似,不同的是后者寻求的是等量关系,列出的是等式,前者寻求的是不等量关系,列方的是不等式,解不等式组所得的结果通常为解集,根据题意需从解集中找出符合条件的答案.在列不等式时,“不超过”“不多于”等用“≤”连接,“至少”“不少于”等用“≥”连接.