1.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为( )
2.如图,⊙O的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( )
A.
B.
C.
D.
3.如图,按英语字母表,,,,,的顺序有规律排列而成的鱼状图案中,字母“H”出现的个数为_______.
4.二次函数是常数中,自变量与函数的对应值如下表:
1
2
3
1
1
一元二次方程是常数的两个根的取值范围是下列选项中的哪一个( ).
A、 B、
C、 D、
5.如右图,一块含有30o角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到 A’B’C’的位置。若 BC的长为15cm,那么顶点A从开始到结束所经过的路径长为 ____________________
6.如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点。
(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与轴交于点C,
连结BA、BC,求△ABC的面积。
7.据宁德网报道:第三届海峡两岸茶业博览会在宁德市的成功举办,提升了闽东茶叶的国内外知名度和市场竞争力,今年第一季茶青(刚采摘下的茶叶)每千克的价格是去年同期价格的10倍.茶农叶亮亮今年种植的茶树受霜冻影响,第一季茶青产量为198.6千克,比去年同期减少了87.4千克,但销售收入却比去年同期增加8500元.求茶农叶亮亮今年第一季茶青的销售收入为多少元?
8.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x元(x为10的正整数倍)。
(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2) 设宾馆一天的利润为w元,求w与x的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
9.某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式。(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系.
图a 图b
10.某公司在两地分别库存挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从地运一台到甲、乙两地的费用分别是500元和400元;从地运一台到甲、乙两地的费用分别是300元和600元.设从地运往甲地台挖掘机,运这批挖掘机的总费用为元.
(1)请填写下表,并写出与之间的函数关系式;
(2)公司应设计怎样的方案,能使运这批挖掘机的总费用最省?
甲
乙
总计
台
台
16台
台
台
12台
总计
15台
13台
28台
11.宝宝和贝贝是一对双胞胎,他们参加奥运志愿者选拔并与甲、乙、丙三人都进入了前5名.现从这5名入选者中确定2名作为志愿者.试用画树形图或列表的方法求出:
(1)宝宝和贝贝同时入选的概率;
(2)宝宝和贝贝至少有一人入选的概率.
12.某中学的高中部在校区,初中部在校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知校区的每位高中学生往返车费是6元,每人每天可栽植5棵树;校区的每位初中学生往返车费是10元,每人每天可栽植3棵树.要求初高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不得超过210元.要使本次活动植树最多,初高中各有多少学生参加?最多植树多少棵?
13.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O出发,先沿北偏西67.4°方向行走13米至点A处,再沿正南方向行走14米至点B处,最后沿正东方向行走至点C处,点B、C都在圆O上.(1)求弦BC的长;(2)求圆O的半径长.(本题参考数据:sin 67.4° = ,cos 67.4° = ,tan 67.4° = )
14.如图,已知:一次函数:的图像与反比例函数: 的图像分别交于A、B两点,点M是一次函数图像在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图像上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2;
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值;
(2)观察图形,通过确定x的取值,试比较S1、S2的大小.
15.如图,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.求证:(1)AF∥BE;(2)△ACP∽△FCA;(3)CP=AE.
16.已知二次函数y=x2+bx+c+1的图象过点P(2,1).
(1)求证:c=―2b―4; (2)求bc的最大值;
(3)若二次函数的图象与x轴交于点A(x1,0)、B(x2,0),△ABP的面积是,求b的值.
17.已知二次函数的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(—3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(3)若的取值范围.
18.如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.
19.张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图(1).然后,他用这8块瓷砖又拼出一个正方形,如图(2),中间恰好空出一个边长为1的小正方形(阴影部分),假设长方形的长为,宽为,且
(1)请你求出图(1)中与的函数关系式; (2)求出图(2)中与的函数关系式;
(3)在图(3)中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;
(4)根据以上讨论完成下表,观察与的关系,回答:如果给你任意8个相同的长方形,你能否拼出类似图(1)和图(2)的图形?说出你的理由.
图(2)中小正方形边长
1
2
3
4
…
6
10
…
20. 已知关于的方程有两个不相等的实数根、,且.
(1)求证:; (2)试用的代数式表示;
(3)当时,求的值.
21. 如图在平行四边形ABCD中,M,N分别为BC和CD边上的中点,试问:AM、AN能否将∠BAD三等分?请说明理由。
22. A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(2)当它们行驶7了小时时,两车相遇,求乙车速度.
23. 如图,线段AB与⊙O相切于点C,连结OA,OB,
OB交⊙O于点D,已知,.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
24. 如图,在平面直角坐标系中,函数(,常数)的图象经过点,,(),过点B作轴的垂线,垂足为C.若的面积为2,求点B的坐标.
25. 如图,已知△ABC,∠ACB=90o,AC=BC,点E、F在AB上,∠ECF=45o,
(1)求证:△ACF∽△BEC
(2)设△ABC的面积为S,求证:AF·BE=2S
26. 某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成. (1)求甲、乙两工程队单独完成此项工程所需的天数. (2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少?
27. 若,则的值为( ).
(A) (B) (C) (D)
28. 整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:
(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?
(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?
29. 如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200 m、120 m,花坛中有一横两纵的通道,横、纵通道的宽度分别为3x m、2x m.(1)用代数式表示三条通道的总面积S;当通道总面积为花坛总面积的时,求横、纵通道的宽分别是多少?(2)如果花坛绿化造价为每平方米3元,通道总造价为3168 x元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.(以下数据可供参考:852 = 7225,862 = 7396,872 = 7569)
30. 如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图 3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图2中,计算裁剪的角度∠BAD;(2)计算按图3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.
31. 方程组的解的个数为( ).
(A)1 (B) 2 (C) 3 (D)4
32. 已知对于任意正整数n,都有,则 .
33. 我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。 经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。每间住了人的客房每日所需服务、维修等项支出共计40元。 问题:我们该如何定价才能赚最多的钱?
34. 如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.
两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于 ;
(2)当PQ//AB时,P点离开D点的时间等于_________秒;
(3)当P、Q、C三点构成直角三角形时,P点离开D点多少时间?
35. 《喜羊羊与灰太狼》是一部中、小学生都喜欢看的动画片,某企业获得了羊公仔和狼公仔的生产专利.该企业每天生产两种公仔共450只,两种公仔的成本和售价如下表所示.如果设每天生产羊公仔x只,每天共获利y元.
(1)求出y与x之间的函数关系及自变量x的取值范围;(2)如果该企业每天投入的成本不超过10000元,那么要每天获利最多,应生产羊公仔和狼公仔各多少只?
类别
成本(元/只)
售价(元/只)
羊公仔
20
23
狼公仔
30
35
36. 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用6天;
(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
37. 2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2012年当年用于城市基础设施维护与建设资金达到8.45亿元.
(1)求从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率;
(2)若2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率相同,预计我市这三年用于城市基础设施维护和建设资金共多少亿元?
38. 如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,
AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.
(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.
(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,判断并说明以A、D、F、E为顶点的四边形是怎样特殊的四边形?
(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.
39. 8人参加象棋循环赛,规定胜1局得2分.平1局得1分,败者不得分,比赛结果是第二名的得分与最后4名的得分之和相同,那么第二名得 分.
40. 有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球。
①采用树形图法或列表法列出两次摸球出现的所有可能结果;
②求摸出的两个球号码之和等于5的概率。
41. 数学课上,张老师给出了问题:如图(1),四边形ABCD是正方形,点E是边BC的中点.
∠AEF=90o,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证
ΔAME≌ΔECF,所以AE=EF.
在此基础上,同学们作了进一步探究:
小颖提出:如图(2),如果把“点E是边BC的中点”改为“点E是边BC上(除了B、C外)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立.你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
小华提出:如图(3),点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
42. 甲、乙两人在环形跑道上练习跑步,甲的速度与乙的速度之比是5:3,若两人同时从同一起点出发,则乙跑 圈后,甲比乙多跑了4圈。
43. 十位数2010888abc能被11整除,则三位数abc最大是
44. 一个长方形如图,恰分成六个正方形,其中最小的正方形的面积是1cm2,这个长方形的面积是 .
45. 如果有2010名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1的规律报数,那么第2009名学生所报的数是
46. 运动会开幕式,主会场进行团体操表演,赏演员开始站成一个8列矩形阵式,加入16人后,所有演员排成一个正方形阵式;又退出15人后,所有演员排成一个小的正方形阵式。求开始出场的演员有多少人。
47. 已知则a2b2c2=( )
A.5 B.3.5 C.1 D.0.5
48. 图5中的三十六个小等边三角形的面积都等于1,则△ABC的面积为
49. 一队旅客乘坐汽车,要求每辆汽车的乘客人数相等,起初,每辆汽车乘了22人,结果剩下一人未上车;如果有一辆汽车空车开走,那么所有旅客正好能平均分乘到其它各车上,已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少名旅客?
50. 一个长方体水箱,从里面量得它的深是30cm,底面的长是25cm,宽是20cm,水箱里已盛有深为acm (a≤30)的水,现在往水箱里放入棱长为10cm的立方体铁块后,水深多少cm?