第二十二章第二节(解一元二次方程-配方法)

文档属性

名称 第二十二章第二节(解一元二次方程-配方法)
格式 rar
文件大小 628.3KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2011-04-22 09:57:00

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
《解一元二次方程——配方法(第一课时)》教学设计说明
本节课,选自《人教版义务教育课程标准实验教材》九年级上册第二十二章第二节, 我将从四个方面对本节课教学设计进行说明.
一、本课数学内容的本质、地位、作用分析
1.本课数学内容的本质
配方法是从平方的定义求解一元二次方程的一种方法,是推导一元二次方程公式解的必要条件.
2.教材的地位和作用
配方法是以配方为手段、以平方根定义为依据解一元二次方程的一种基本方法,其中所涉及的完全平方式、求一个非负数的平方根以及解一元一次方程等都是学生已有的知识与技能,为本节课的学习奠定了知识技能方面的基础.
学生在七年级已经较好地掌握了一元一次方程的基本解法,初步了解到解方程的过程就是一个沟通“未知”与“已知”的过程,本节在此基础上,经历探索解方程的过程中,通过复杂问题向简单问题、特殊向一般的转化,使学生进一步会转化、归纳等数学思想,总结配方法的基本思路.一元二次方程的解法在初等数学领域有着十分广泛的应用,它与二次函数(九年级)、二次不等式(高中)有着密切的联系,是进一步完善方程体系的有效载体.
二、教学目标分析
1.知识技能
(1)能正确运用平方根的定义解形如x2=n(n≥0)与(mx+ n)2=p(p≥0)的一元二次方程;
(2) 能正确书写一元二次方程的根;
(3)能指出转化后的两个一元二次方程. 会用配方法求出二次项系数为1、一次项系数为偶数(绝对值小于10)的一元二次方程的根.
2. 数学思考
在根据平方根的定义解形如x2=n(n≥0)的方程的过程中,能运用“整体性 ”将此方法迁移到解形如(mx+ n)2=p(p≥0)的方程.
3.解决问题
在学习的过程,体会配方法的运用,并能求解形如a(ex+f)2+c=0型的一元二次方程,进一步发展符号感,提高代数运算能力.
4.情感态度
在探索活动中体验探究的乐趣,克服数学活动中的困难,促进形成学好数学的自信心,
体会与他人作交流的优点。
三、教学问题诊断
《课程标准(实验稿)》对方程的要求是:能够根据具体问题中的数量关系,列出方程;体会方程是刻画现实世界的一个有效的数学模型;能根据具体的实际意义,检验结果是否合理. 本节则主要在于熟练运用配方法解方程,同时考虑到单纯的式的训练,比较枯燥,因此通过一元二次方程的建模过程,体会方程的解必须符合实际意义,增强用数学的意识,巩固用配方法解一元二次方程;培养学生创新思维能力,展示自己驾驭数学去解决实际问题的勇气、才能及个性.
如何配方是本节课的学习重点与难点,如何找到对应的常数项是解决问题的关键. 在进行这一块内容的教学时,提出具有一定跨度的问题串引导学生进行自主探索;提供充分探索与交流的空间;在巩固、应用配方法时,从一元二次方程二次项系数为1讲到二次项系数不为1的情况,呈现形式丰富多彩,教学内容的编排螺旋式上升.这既提高了学生的学习兴趣,又加深了对所学知识的理解.在学习应用配方法解一元二次方程时,一定要首先掌握好直接开平方法,弄清楚配方法就是将方程变形为我们熟悉的能用直接开平方法求解的形式,在这里关键要掌握配方的方法,也就是配方法解一元二次方程的基本步骤,这是基本,也是关键.若以上两个问题能透彻理解把握,就会学好本节.
四、本节课的教法特点以及预期效果分析
1、本节课的教法特点
根据新课程标准的评价理念,在教学过程中,我们不仅要注重学生的参与意识和学生对待学习的态度是否积极,而且更要注重引导学生尝试从不同角度分析和解决问题.
本学段的学生独立思考、探索的愿望和能力有所提高,并能在探索的过程中形成自己的观点,能在倾听别人意见的过程中逐渐完善自己的想法.因此,本节课采用“自主探索、合作交流与教师引导相结合”的教学方式,给学生提供充分的探索与交流的空间,使学生进一步经历观察、实验、猜想、证明等一系列的数学活动,在活动中获得知识,发展能力,形成解决问题的一些基本策略,体验数学活动的探索性与创造性,感受数学的严谨性和结论的确定性.
本节课教学采用了“自主探究”模式,由“创设情境——总结概括——启发引导——探究完善——实际应用” 五个教学环节组成.在教学中,从学生熟悉的实际问题情境出发,把较多的课堂时间留给学生,使他们有机会独立思考、相互切磋,并发表意见.而教师作为自主探究活动的组织者、引导者、管理者,运用了讨论法、讲解法、发现法等多种教学方法的组合,既注重提供知识的直观素材和背景材料,又为激活相关知识和引导学生思考探究创设生动有趣的现实问题情境.教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿于教学活动的全过程.
2、预期效果分析
本节课的教学设计坚持从学生情况出发,以学生为主体,注重对新理念的贯彻和教学方法的使用;在突破难点时,充分尊重学生,多种方法并用,注意培养自学能力,以使学生充分理解所学内容;坚持当堂训练,例题、练习的设计针对性强,重点突出,并注重对方法的总结;强调通过学生积极、主动的参与,充分经历知识的形成、发展与应用的过程,在这个过程中掌握知识,形成技能,发展思维.总之,在数学课堂教学的过程中,教师必须认真审视自己在新课堂教学中的角色和职能,只有“相信学生自主学习,主动思维”才会让我们的课堂教学更有效,才能创造出课堂教学的辉煌,也只有这样的课堂才能让学生不断的迸发出智慧的火花.
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
《解一元二次方程——配方法(第一课时 )》教学设计
教学目标
1.知识技能
(1)能正确运用平方根的定义解形如x2=n(n≥0)与(mx+ n)2=p(p≥0)的一元二次方程;
(2)能正确书写一元二次方程的根;
(3)能指出转化后的两个一元二次方程. 会用配方法求出二次项系数为1、一次项系数为偶数(绝对值小于10)的一元二次方程的根.
2. 数学思考
在根据平方根的定义解形如x2=n(n≥0)的方程的过程中,能运用“整体性 ”将此方法迁移到解形如(mx+ n)2=p(p≥0)的方程.
3.解决问题
在学习的过程,体会配方法的运用,并能求解形如a(ex+f)2+c=0型的一元二次方程,进一步发展符号感,提高代数运算能力.
4.情感态度
体验探究的乐趣,克服数学活动中的困难,促进形成学好数学的自信心,体会与他人
作交流的优点。
重难点、关键
重点:根据平方根的定义理解并能求解形如x2=n(n≥0、m x+ n)2=p(p≥0)的方程.
难点:解形如x2+ax+c=0(|a|≤10,且a为偶数)的方程.
关键:将一元二次方程转化成两个一元一次方程.
教学准备
教师准备:制作课件,精选习题与达标检测题.
学生准备:复习有关知识,预习本节课内容.
教学过程
一、问题情境,导入新课
小知识:堰塞湖
堰塞湖是由火山熔岩流,冰碛物或由地震活动使山体岩石崩塌下来等原因引起山崩滑坡体等堵截山谷,河谷或河床后贮水而形成的湖泊.
堰塞湖的堵塞物不是固定永远不变的,它们也会受冲刷、侵蚀、溶解、崩塌等等。一旦堵塞物被破坏,湖水便漫溢而出,倾泻而下,形成洪灾,极其危险。灾区形成的堰塞湖一旦决口会对下游形成洪峰,破坏性不亚于灾害的破坏力。为此要采取开凿泄洪渠等一系列抢险措施.
南方某地区因连降暴雨,山体滑坡导致一条河流形成堰塞湖,为排除险情需要开凿400米长的泄洪渠,已知泄洪渠的截面为梯形下底是上底的3倍,高和上底长度相等,预计需挖土石方总量约为15000立方米求所挖泄洪渠的上底长度是多少米?
解:设所挖泄洪渠的上底长度是x米,根据题意得
.
师:这个方程是我们上节遇到的一元二次方程,如何解为类型的方程是本节课我们共同学习的目标. 上述方程可化x2 =25.这个方程的解是什么?你会求解吗?
生:x=±5.
师:你的依据是什么?
生:我们在八年级学过平方根,用这一定义可得到x=±5.
师:我们今后将写作:x1=5,x2=-5.
生:x2=-5 不合题意,应舍去.因此所挖泄洪渠的上底长度是5米.
师:很好!这位同学的数学思维很深刻!
二、基于问题,探索方法
妨照上述解方程的方法,你能解下列方程吗?
(2x-1)2=9.(学生尝试)
解:2x-1=±3.
2x-1=3或2x-1=-3.
所以,方程的两根为 x1=2,,x2=-1.
师:具有什么结构牲的一元二次方程能用上述方法去解呢?你能举出这样的例子吗?
生:举例:x2=49; x2=12; (x+1)2=4; (3x-2)2=5等.
师:请同学求解上述方程的根,要求每人至少解两个方程,之后与同伴相互交流你的方法..
归纳(学生):在解上述方程时,我们把原来的方程转化成两个一元一次方程.
归纳(师):如果方程能化成或的形式,那么直接开平方可得或.
练习1
(1)方程x2=0.25的根是       ;
(2)方程2x2=18的根是       ;
(3)方程(x+1)2=1的根是       .
例1 用开平方法解方程 9x2=4.
师分析,示范完成解答.
解:两边同除以9,得 x2=.
利用开平方法,得 x= .
所以,原方程的根是
例2 用开平方法解方程 3x2=-4.
解:两边同除以3,得 .
因为负数没有平方根,所以原方程没有实数根.
探究一:对于方程 x2+6x+9=25, x2+6x=16你会解吗?请解答并说说你的理由.
x2+6x+9=25 . x2+6x=16.
观察比较
x2+6x+9=16+9.
(x+3)2=25.
(x+3)2=25.
探究二:如果换成方程x2+6x-16=0你会解吗?
师:在学生讨论方程x2+6x=16的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.
归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.
练习2
完成下列填空空题:
; ;
.
问:利用配方法解下列方程,你能从中得到在配方时具有的规律吗?
(1)x2-8x + 1 = 0;(板书)
(2);(3).
生:先独立思考,自主探索,然后交流配方时发现的规律.
分析交流:(1)中经过移项可以化为,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到,从而将原方程化为(x-4)2=15;
(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即,方程两边都加上,方程可以化为.
(3)按照(2)的方式进行处理.
解: (1)移项,得 x2- 8x= -1.
配方,得 x2- 8x+42= -1+42.
(x-4)2 = 15.
即:x- 4 = .
所以,方程的根为:.
(2)移项, 得 .
二次项系数化为1,得 .
配方得 .
由此可得 .
即: .
所以, .
(3)移项,得3x2- 6x= -4.
二次项系数化为1,得 .
配方,得 .
即: .
所以,原方程无实根.
师:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:
(1)把方程化为一般形式;
(2)把方程的常数项通过移项移到方程的右边;
(3)方程两边同时除以二次项系数a;
(4)方程两边同时加上一次项系数一半的平方;
(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.
练习3

.
三、达标检测
1. .
2.一元二次方程的解为_______________.
3.若是方程=4的两根,则的值是( )
A.8 B.4 C.2 D.0
4.方程的解是( )
A. B.
C. D.
5.用配方法解方程,则方程可变形为( )
A. B. C. D.
6.解方程:.
7.解方程:.
四、小结提升
问:本节课你在哪些方面有了新的提高,受到什么启发?
生(师完善):1.一般地,对于x2=p 或 (mx+n)2=p(p≥0)的方程,根据平方根的定义,用开平方法取求解.
2.如果一个一元二次方程不能直接开平方解,可把方程化为左边是含有x的完全平方形式,右边是非负数,再开平方降次的方法去求解.
注意:配方时, 首先把二次项系数化为1,再在等式两边同时加上一次项系数一半的平方.
教师引导学生归纳小结,学生反思学习和解决问题的过程.
五、布置作业
1.必做题:课本P45 习题22.2   第1、2、3题.
2. 选做题:如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?
板书设计:
22.2.1 解一元二次方程——配方法
一、直接开平方法 二、配方法
x2=p(p≥0) (mx+ n)2=p(p≥0) 定义描述
例1
例2
移项
变形
.
.
.
.
.
.
降次
配方
A
B
C
Q
P
板演区
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网