本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
课堂教学设计
课题: 多边形的内角和(1) 教材: 人教版七年级下册第七章第三节
设计要素 设计内容
教学内容分析 本节课是在学习了三角形内角和以及多边形基本概念的基础上,对多边形内角和的探索与研究 ,对今后研究多边形起着很重要的作用;同时其得出过程所涉及的转化的思想和归纳的方法也是学生研究数学乃至其它学科所必备的思想,所以起着非常重要的作用。
教学目标 知识与技能 1.通过探究,归纳出多边形的内角和公式。2.利用公式进行简单计算。
过程与方法 让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理、合情推理能力。
情感态度价值观 激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。
教学分析 教学重点 探索多边形内角和公式
教学难点 难点 探索多边形的内角和时,如何把多边形转化成三角形。
解决办法 从学生现有的认知出发,引导学生把未知问题转化为已知问题来解决。
教学资源 七年级下册数学教科书、教参、课件、四边形卡纸等。
板书设计 7.3.2 多边形的内角和(1)多边形的内角和等于(n-2)·180° 学生板演习题 (n≥3且n为整数)
教学过程
教学环节教学内容 教师活动 学生活动 教学媒体使用预期效果
一、创设情境引出课题 二、探究 新知 教学环节教学内容 三、巩固练习 四、归纳总结 教学环节教学内容五、布置作业 导课:某校为发展学生对生物园的兴趣和爱好,划出一块三角形和四边形区域作生物园,该校七年级兴趣小组计划在两个生物园的各个角落种植半径为R的扇形区域的鲜花,谁能帮助这些兴趣小组的学生算一算每一个生物园鲜花的占地面积(课件展示) 1、提问:在前面的学习中,你都了解哪些多边形的内角和? 2、探究1:小组合作在学具袋中选择你喜欢的工具,利用四边形卡纸,探索任意四边形的内角和。教师深入小组参与活动,指导、倾听学生交流。针对不同认识水平的学生,教师可以在测量、拼图等感性活动的基础上,再引导学生利用添加辅助线的方法把多边形转化为三角形。师小结教师活动3、探究2:探索五边形、六边形、七边形的内角和。本次活动教师应重点关注:学生能否类比四边形的得出方法求出五边形,六边形和七边形的内角和,发现和概括出内角和与边数之间的关系,由此归纳出多边形的内角和公式。课件展示问题:(1)试一试:(2)做一做:(3)解决问题我能行:(4)能力提升我最棒:提问:通过本节课的学习,你都学到了哪些知识,有什么收获?教师活动教材第90页,习题7.3必做题:2、5选做题:7、8 观察思考 学生思考并回答 分组交流合作完成代表发言学生活动学生独立思考合作完成学生利用当堂所学的知识通过独立思考、小组合作解决问题。学生反思学习和解决问题的过程,谈收获。 学生活动学生可通过独立思考或小组交流解决问题。 通过实际问题,创设情境,激发学生学习兴趣,引出课题。 探索多边形内角和与边数关系的根本方法,是把一个多边形转化为若干个三角形,因此,唤醒学生已有知 “三角形内角和等于180°”,将有助于后继问题的解决。四边形是多边形中的简单图形,因此从四边形入手,有利于学生探索它与三角形的关系,发现转化的思想。此活动鼓励学生找到多种方法体会多种分割形式,体验解决问题策略的多样性。并从中找出解决问题的关键。教学媒体使用预期效果通过分割求和求出五边形,六边形和七边形的内角和,并通过填表,发现规律,进而得出多边形边数与内角和之间的关系,归纳n边形的内角和公式即(n-2)·180°。通过公式的归纳过程,体会数形之间的联系,感受由特殊到一般的数学推理过程和数学思考方法,发展合情推理的能力。从已有的生活经验和知识出发,给学生提供现实的、富有挑战性的练习题,激发学生的学习兴趣,引导他们在做练习的过程中,通过小组协作或自主探索来巩固知识和获得技能,掌握基本的数学思想方法。通过回顾和反思,让学生看到自己的进步,激励学生,促使学生形成良好的心理品质。教学媒体使用预期效果通过两个梯度的练习,使不同层次的学生在原有的基础上都能有所提高。同时通过课后作业,教师及时了解学生对本节知识的掌握情况,并对有困难的学生给予适时的指导。
教学反思 通过这一节课,我确实感到:同学们已经习惯于多思、善疑,并且敢讲、爱讲、善讲,这动摇了教师的主体地位,使我们不得不走下讲台,走到同学们中去,当好一个组织者的角色。也充分体现了学生动手实践、自主探究、合作交流的学习方式,可以使同学们的思维更深刻,对数学理解更全面。上完这一堂课,我一方面欣喜于自己能给学生提供探索、交流的时间和空间,另一方面,也使我感到学生的可敬可畏,自己思想上还有一些老框框,想让学生思维跟着自己走,这也促使我作为一个一线教师进行反思。每天接触学生,每天都会发生一些令人兴奋、焦灼的故事,我由衷的说:我是你的教师,你是我的教师,我们是互相的教师,在互相促进中共同成长。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
《多边形的内角和》教案说明
一.教学任务分析
1、教学目标定位
根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:
(1).知识技能目标
让学生掌握多边形的内角和的公式并熟练应用。
(2).过程和方法目标
让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。
(3).情感目标
激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。
2、教学重、难点定位
教学重点是多边形的内角和的得出和应用。
教学难点是探索和归纳多边形内角和的过程。
二.教学内容分析
1、教材的地位与作用
本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。
2、联系及应用
本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此
多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。
三.教学诊断分析
学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的
作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。
四.教法特点及预期效果分析
本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:
1、教学方法的设计
我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用
我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。
以上是我对《多边形的内角和》的教案说明。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网