几 何 概 型
题型1:线长问题
1.(09山东)在区间上随机取一个数,的值介于0到之间的概率为 ( )
A. B. C. D.
【解析】在区间[-1,1]上随机取一个数x,即时,要使的值介于0到之间,需使或∴或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A.
2.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ?
解:以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S,乘客随机地到达,即在这个长度是 10 的区间里任何一个点都是等可能地发生,因此是几何概率问题。
要使得等车的时间不超过 3 分钟,即到达的时刻应该是图中 A 包含的样本点,
p=== 0.3 。
作业:1.(2009辽宁卷)ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一
点,取到的点到O的距离大于1的概率为 ( )
A. B. C. D.
【解析】长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为因此取到的点到O的距离小于1的概率为÷2=取到的点到O的距离大于1的概率为
2.(2009福建卷)点A为周长等于3的圆周上的一个定点,若在该圆周上随机取
一点B,则劣弧AB的长度小于1的概率为 。
解析:如图可设,则,根据几何概率可知其整体事件是其周长,则其概率是。w。w.w.k.s.5.
3.在长为10厘米的线段AB上任取一点G,用AG为半径作圆,则圆的面积介于36平方厘米到64平方厘
米的概率是 .
题型2:面积问题
1.投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为1/2米的小方块。实验是向板中投镖,事件A表示投中阴影部分为成功,考虑事件A发生的概率。
解析:P(A)=(1/2)2/12=1/4。
2.(CB对讲机问题)(CB即CitizenBand市民波段的英文缩写)两个CB对讲机持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:0O时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:0O时他们能够通过对讲机交谈的概率有多大?
解:设x和y分别代表莉莉和霍伊距某地的距离,
于是
则他俩所有可能的距离的数据构成有序点对(x,y),这里x,y都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置, 他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如右图)因此构成该事件的点由满足不等式
的数对组成,此不等式等价于
右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1200平方米公里,而事件的面积为
,
于是有。
3.(意大利馅饼问题)山姆的意大利馅饼屋中设有一个投镖靶 该靶为正方形板.边长为18厘米,挂于前门附近的墙上,顾客花两角伍分的硬币便可投一镖并可有机会赢得一种意大利馅饼中的一个,投镖靶中画有三个同心圆,圆心在靶的中心,当投镖击中半径为1厘米的最内层圆域时.可得到一个大馅饼;当击中半径为1厘米到2厘米之间的环域时,可得到一个中馅饼;如果击中半径为2厘米到3厘米之间的环域时,可得到一个小馅饼,如果击中靶上的其他部分,则得不到谄饼,我们假设每一个顾客都能投镖中靶,并假设每个圆的周边线没有宽度,即每个投镖不会击中线上,试求一顾客将嬴得:
(a)一张大馅饼,
(b)一张中馅饼,
(c)一张小馅饼,
(d)没得到馅饼的概率
解析:我们实验的样本空间可由一个边长为18的正方形表示。右图表明R和子区域r1、r2、r3和r,它们分别表示得大馅饼、中馅饼、小馅饼或没得到馅饼的事件
;
;
;
。
作业:1、甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率.
解 以x轴和y轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y)的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:
P(A)====.
所以,两人能会面的概率是.
2.在平面直角坐标系xOy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距
离不大于1的点构成的区域,向D中随机投一点,则落入E中的概率为 .
3. 将长为l的棒随机折成3段,求3段构成三角形的概率.
解 设A=“3段构成三角形”,x,y分别表示其中两段的长度,则第3段的长度为l-x-y.
则试验的全部结果可构成集合={(x,y)|0<x<l,0<y<l,0<x+y<l},
要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-yx+y>,x+l-x-y>yy<,y+l-x-y>xx<.
故所求结果构成集合A=.
由图可知,所求概率为P(A)===.
题型3:体积问题
1.在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少?
解 1升=1 000毫升,记事件A:“取出10毫升种子含有这粒带麦锈病的种子”.
则P(A)==0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01.
记事件B:“取30毫升种子含有带麦锈病的种子”.
则P(B)==0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.
2.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率。
解:解析:由于取水样的随机性,所求事件的概率等于水样的体积与总体积之比,即2/400=0.005。
题型4:随机模拟
1.随机地向半圆(为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与轴的夹角小于的概率.
解析:半圆域如图
设‘原点与该点连线与轴夹角小于’
由几何概率的定义
。
2.随机地取两个正数和,这两个数中的每一个都不超过1,试求与之和不超过1,积不小于0.09的概率.
解析:,不等式确定平面域。
‘’则发生的充要条件为不
等式确定了的子域,
故:
古典概型
1.(2009江西卷)甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为 ( )
A. B. C. D.
【解析】所有可能的比赛分组情况共有种,甲乙相遇的分组情况恰好有6种,故选.
2.(2009江苏卷)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 .
解:从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2。
3.把标号为1,2,3,4的四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个。事件“甲分得1号球”与事件“乙分得1号球”是( )
(A)互斥但非对立事件 (B)对立事件
(C)相互独立事件 (D)以上都不对
答案:A。
点评:一定要区分开对立和互斥的定义,互斥事件:不能同时发生的两个事件叫做互斥事件;对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件。
4.(2009湖北卷)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、
0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。
【解析】三人均达标为0.8×0.6×0.5=0.24,三人中至少有一人达标为1-0.24=0.76
5.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率
解析:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,
则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],事件A由4个基本事件组成,因而,P(A)==。
6.(2009福建卷)袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(I)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
解:(I)一共有8种不同的结果,列举如下:
(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)
(Ⅱ)记“3次摸球所得总分为5”为事件A
事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红)事件A包含的基本事件数为3,由(I)可知,基本事件总数为8,所以事件A的概率为 21世纪教育网
7.设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
解 设事件A为“方程x2+2ax+b2=0有实根”.
当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.
(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).
其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,事件A发生的概率为
P(A)==.
(2)试验的全部结果所构成的区域为
{(a,b)|0≤a≤3,0≤b≤2}.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为
P(A)==.
广东省2009届高三数学一模试题分类汇编——概率文
1、(2009广州一模)某校高三年级要从3名男生a、b、c和2名女生d、e中任选3名代表参加学校的演讲比赛.
(1)求男生a被选中的概率; (2) 求男生a和女生d至少一人被选中的概率.
解:从3名男生a、b、c和2名女生d、e中任选3名代表选法是:
a,b,c;a,b,d;a,b,e;a,c,d;a,c,e;a,d,e;b,c,d;
b,c,e;b,d,e;c,d,e共10种. ……4分
(1)男生a被选中的选法是:a,b,c;a,b,d;a,b,e;a,c,d;a,c,e;a,d,e,共6种,于是男生a被选中的概率为. ……8分
(2) 男生a和女生d至少一人被选中的选法是:a,b,c;a,b,d;a,b,e;a,c,d;a,c,e;a,d,e;b,c,d;b,d,e;c,d,e共9种,
故男生a和女生d至少一人被选中的概率为. ……12分
2(2009广东三校一模)甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字),设甲、乙所抛掷骰子朝上的面的点数分别为、,那么
(I)共有多少种不同的结果?
(II)请列出满足复数的实部大于虚部的所有结果。
(III)满足复数的实部大于虚部的概率是多少?
解: (I) 共有种结果 4分
(II) 若用来表示两枚骰子向上的点数,满足复数的实部大于虚部结果有:
,(3,1),(4,1)(5,1),(6,1)(3,2),(4,2)(5,2),(6,2)(4,3),
(5,3)(6,3),(5,4)(6,4),(6,5)共15种. 8分
(III)满足复数的实部大于虚部的概率是:P= 12分
3、(2009番禺一模)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日 期
3月1日
3月2日
3月3日
3月4日
3月5日
温差(°C)
10
11
13
12
8
发芽数(颗)
23
25
30
26
16
(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“”的概率.
(2)甲,乙两位同学都发现种子的发芽率与昼夜温差近似成线性关系,给出的拟合直线分别为与,试利用“最小平方法(也称最小二乘法)的思想”,判断哪条直线拟合程度更好.
解:(1)的取值情况有
,,
.基本事件总数为10. ……3分
设“”为事件,则事件包含的基本事件为 ……5分
所以,故事件“”的概率为. ……7分
(2)将甲,乙所作拟合直线分别计算的值得到下表:
10
11
13
12
8
23
25
30
26
16
22
24.2
28.6
26.4
17.6
22
24.5
29.5
27
17
用作为拟合直线时,所得到的值与的实际值的差的平方和为
………9分
用作为拟合直线时,所得到的值与的实际值的差的平方和为
………11分
由于,故用直线的拟合效果好. ………12分
4、(2009茂名一模)已知集合在平面直角坐标系中,点M(x,y)的坐标。
(1)请列出点M的所有坐标;
(2)求点M不在x轴上的概率;
(3)求点M正好落在区域上的概率。
解:(1)集合A={-2,0,1,3},点M(x,y)的坐标,
点M的坐标共有:个,分别是:
(-2,-2),(-2,0),(-2,1),(-2,3);(0,-2),(0,0),(0,1),(0,3);
(1,-2),(1,0),(1,1),(1,3);(3,-2),(3,0),(3,1),(3,3)…………………….4分
(2)点M不在x轴上的坐标共有12种:
(-2,-2),(-2,0),(-2,1),(-2,3);(1,-2),(1,0),(1,1),(1,3);
(3,-2),(3,0),(3,1),(3,3)
所以点M不在x轴上的概率是………………………………………..8分
(3)点M正好落在区域上的坐标共有3种:(1,1),(1,3),(3,1)
故M正好落在该区域上的概率为…………………………………………………12分
5、(2009汕头一模)田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B, C,田忌的三匹马分别为a, b, c;三匹马各比赛一次,胜两场者为获胜。若这六匹马比赛优、劣程度可以用以下不等式表示:A>a>B>b>C>c 。
(1)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;
(2)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马。那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?
解:记A与a比赛为(A,a),其它同理.
(l)齐王与田忌赛马,有如下六种情况:
(A,a)、(B,b)、(C,c);(A,a)、(B,c)、(C,b);
(A,b)、(B,c)、(C,a):(A,b)、(B,a)、(C,c):
(A,c)、(B,a)、(C,b);(A,c),(B,b),(C,a)
其中田忌获胜的只有一种:(A,c)、(B,a)、(C,b)
故田忌获胜的概率为
(2)已知齐王第一场必出上等马A,若田忌第一场必出上等马a或中等马b,
则剩下二场,田忌至少输一场,这时田忌必败。
为了使自己获胜的概率最大,田忌第一场应出下等马c。。。。。。。。。。。8分
后两场有两种情形:
①若齐王第二场派出中等马B,可能的对阵为:(B,a)、(C,b)或(B,b)、
(C,a)。
田忌获胜的概率为 。。。。。。。。。。。10分
②若齐王第二场派出下等马C,可能的对阵为:
(C,a)、(B,b)或(C,b)、.(B,a).
田忌获胜的概率也为.所以,
田忌按c、a、b或c、b、a的顺序出马,才能使自己获胜的概率达到最大。。。。12分
6、(2009韶关一模)现从3道选择题和2道填空题中任选2题.
(Ⅰ)求选出的2题都是选择题的概率;
(Ⅱ)求选出的两题中至少1题是选择题的概率.
解(Ⅰ)记“选出两道都是选择题”为A,5题任选2题,共有种,
其中,都是选择题有3种.……………………………………2分
∴ .…………………………………………4分
(Ⅱ).记“选出1道选择题,1道填空题”为B,
∴ ……………………………10分
所以,至少有1道选择题的概率 ……………12分
7、(2009深圳一模)先后随机投掷2枚正方体骰子,其中表示第枚骰子出现的点数,表示第枚骰子出现的点数.
(Ⅰ)求点在直线上的概率;
(Ⅱ)求点满足的概率.
解:(Ⅰ)每颗骰子出现的点数都有种情况,
所以基本事件总数为个. …………………… 2分
记“点在直线上”为事件,有5个基本事件:
, …………………… 5分
…………………… 6分
(Ⅱ)记“点满足”为事件,则事件有个基本事件:
当时,当时,; …………………… 7分
当时,;当时, …………………… 9分
当时,;当时,. …………………… 11分
…………………… 12分
8、(2009湛江一模)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.
(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?
解:(Ⅰ)用(表示甲摸到的数字,表示乙摸到的数字)表示甲、乙各摸一球构成的基本事件,则基本事件有:、、、、、、、、、、、、、、、,共16个;
------------------------------------------------------3分
设:甲获胜的的事件为A,则事件A包含的基本事件有:、、、、、,共有6个;则 ------------------------------5分
------------------------------6分
(Ⅱ)设:甲获胜的的事件为B,乙获胜的的事件为C;事件B所包含的基本事件有:、、、,共有4个;则 -------------------------8分
----------------------10分
,所以这样规定不公平. -----------------11分
答:(Ⅰ)甲获胜的概率为;(Ⅱ)这样规定不公平. -----------------------12分
21世纪教育网