6.2
三角形的面积练习课
教案
【教学内容】:教材P93~94练习二十第3~10题。
【教学目标】:
知识与技能:提高学生灵活应用学过的计算公式解决实际问题的能力,培养空间观念。
过程与方法:通过练习使学生逐步加深对三角形面积公式的理解,提高应用公式解决实际问题的水平。
情感、态度与价值观:使学生在完成练习的过程中,增强对空间与图形内容的学习兴趣,逐步培养积极的数学情感。
教学重点:逐步加深对三角形面积公式的理解,提高应用公式解决实际问题的水平。
教学难点:利用三角形面积的计算公式解决生活中的相关问题,提高学生运用知识分析和解决实际问题的能力。
【教学方法】:学练结合。
教学准备:多媒体。
【教学过程】
【谈话引入】
同学们,今天这节课我们要进行三角形的面积的练习。通过这节课的练习,第一要让你们进一步熟练掌握计算三角形面积的方法,第二能运用已掌握的相关知识解决日常生活中的实际问题。今天我们要看一看,比一比,哪些同学积极动脑,踊跃发言,学得扎实,学得灵活?
【指导练习】
1.你能想办法求出下面三角形的面积吗?(练习二十第3题)
动手操作:画出已知底的高。
指名学生展示自己的作品,请其余学生作点评。
教师在以上图形中填入底和高的数据,学生口答三角形面积。
2.教材第93页练习二十第4题。
(1)引导分析:要求种这片草坪需要多少钱,必须先求什么?
(2)学生讨论后交流。
(3)学生独立列式解答,并相互订正。
2.教材第94页练习二十第6题。
(1)组织学生读题,理解题意。
(2)学生独自计算,教师巡视,集体订正。
3.教材第94页练习二十第8题。
(l)学生用尺量一量这两条虚线间的距离,理清这两条虚线是什么关系。
(2)看看图中哪两个三角形的面积相等,为什么?
引导学生明确:等底等高的两个三角形面积相等。
(3)分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来。
【巩固拓展】
1.一个直角三角形三条边的长分别是5厘米、12厘米和l3厘米,它的面积是多少平方厘米?
(1)读题,弄清题意。要求三角形的面积,必须知道底和对应的高。
(2)观察直角三角形的特征,猜测这个直角三角形的底和对应的高分别是多少。
(3)学生讨论、交流,共同解答问题,然后组织汇报。
2教材第94页练习二十第9
题。
(1)教师出示题目。
引导观察,要求平行四边形的周长,必须知道相邻两边的长度。
(2)学生独立解题。
(3)教师组织汇报交流。
3.教材第94页练习二十第10
题。
(1)引导学生观察:A点是中点,把平行四边形的底边平均分成两部分,即把大三角形平均分成了两部分。
(2)学生在小组内议一议:阴影部分面积和大三角形面积有什么关系?大三角形的面积与平行四边形的面积有什么关系?
(3)组内交流解题方法,指名汇报,集体订正。
4.通过抓不变量解决图形面积问题
下图中三角形ABD的面积是20cm2,BD的长为5
cm,DC的长为3
cm。求三角形ADC的面积。
学生看图读题,理解题目意思,尝试解答。
思路导引:解答本题的关键是求三角形ABD的高,也就是三角形ADC的高。
三角形ABD的面积
BD边上的高→这个高也是三角形ADC的高
BD的长
三角形ADC的面积
DC的长
规范解答:
h=2S÷a
S=ah÷2
=2×20÷5
=3×8÷2
=8(cm)
=12(cm2)
答:三角形ADC的面积是12
cm2。
【课堂小结】通过这节课的学习,你又有哪些收获?
【作业】:教材第93~94页练习二十第5、7题。
【板书设计】:
练习课
等底等高的两个三角形面积相等。
【教学(后记)反思】:6.2
三角形的面积
教案
【教学内容】:教材P91~92例2及练习二十第1、2题。
【教学目标】:
知识与技能:掌握三角形的面积计算公式,并能正确计算三角形的面积。
过程与方法:经历探索三角形的面积计算公式的过程,能用三角形的面积计算公式解决简单的实际问题。
情感、态度与价值观:培养学生观察、比较、推理和概括能力。
教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:三角形的面积计算公式的推导过程和实际应用。
【教学方法】:动手实践、自主探索、合作交流
教学准备:多媒体。
【教学过程】
【复习导入】
1.出示长方形、正方形、平行四边形、三角形的图片。
提问:我们学过了哪些平面图形的面积?计算这些图形的面积公式是什么?
学生回答:长方形的面积=长×宽;正方形的面积=边长×边长;
平行四边形的面积=底×高。
2.师:今天我们就一起来研究“三角形的面积”。(板书课题:三角形的面积)
3.学习新知识之前,我们共同回忆一下平行四边形的面积计算公式是怎样得出的?(演示推导过程)
(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)
【互动新授】
l.谈话:成为一名少先队员后,我们每个人都要佩带红领巾。红领巾是什么形状的?(三角形)如果要想知道它用多少面料,要怎样解决呢?(求出三角形的面积。)
追问:怎样求三角形的面积?引导学生利用平行四边形的面积公式的推导猜测,可以把三角形转化成我们已经学过的图形。
2.请每个小组拿出三角形学具,并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两个。)
师提出操作要求:用两个同样的三角形拼一拼,并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?(这里不让学生回答,而是通过动手操作得出结论。)
3.分小组操作,并利用下表做好记录。
我们是用两个(
)三角形,拼成了一个(
)。
原三角形的底等于拼成的(
)形的(
);原三角形的高等于拼成的(
)形的(
);原三角形的面积等于拼成的(
)形的(
)。
教师巡视指导。
小组汇报操作结果:让学生边汇报边把转化后的图形贴在黑板上。
学生可能选用两个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,
每一个锐角三角形的面积是这个平行四边形面积的一半,所以得出一个三角形的面积=底×高÷2。
也可能选用两个完全一样的直角三角形拼成了一个长方形,拼成的长方形的长就是直角三角形的一条直角边(可以看作直角三角形的高),拼成的长方形的宽就是直角三角形的另一条直角边(可以看作直角三角形的底)。拼成的长方形的面积=长×宽,每一个直角三角形的面积就是这个长方形面积的一半,所以得出一个三角形的面积=底×高÷2。
还可以选两个完全一样的钝角三角形拼成一个平行四边形。同理,每一个钝角三角形的面积是这个平行四边形面积的一半。所以,得出一个三角形的面积=底×高÷2。
4.小结:不管是锐角三角形、直角三角形,还是钝角三角形,只要是两个完全一样的三角形,就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形的面积的一半。
追问:是不是任意一个三角形的面积都是任意一个平行四边形面积的一半呢?
教师可以通过任意一个三角形和与其不等底等高的平行四边形的纸板,让学生通过对比得出:三角形的底和高必须与平行四边形的底和高相等时,这个三角形的面积才是平行四边形的面积的一半。三角形的面积是与它等底等高的平行四边形的面积的一半。(教师根据学生回答板书)
再让学生说一说三角形的面积的计算公式是什么?
5.如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,那么三角形的面积计算公式可以写成:S=ah÷2(板书)。
6.教学教材第92页例2。
出示第92页例2:红领巾的底是lOOcm,高是33cm,它的面积是多少平方厘米?
让学生独立计算,再集体订正。
说一说都是怎样做的,并根据学生的汇报板书计算过程:
S=ah÷2
=100×33÷2
=1650(cm2)
7.让学生再说一说:为什么要除以2?
学生可能会回答:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。
【巩固拓展】
1.出示:一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
由学生独立解答,订正答案。
2.完成教材第92页“做一做”第1题。
先说一说涂色的三角形的面积与平行四边形的面积有什么关系,再计算。
(涂色的三角形的面积是平行四边形面积的一半。)
3.完成教材第92页“做一做”第2题。
先让学生找一找三角尺的底和高,使学生明白直角三角形的任意一条直角边作底,另一条直角边就作高。如底是7.2cm,高是12.5cm。再进行计算。
【课堂小结】
师:这节课你学会了什么?有哪些收获?
引导总结:
1.三角形的面积=底×高÷2,用字母表示S=ah÷2。
2.要求三角形的面积需要知道三角形的底和高。
3.三角形的面积是与它等底等高的平行四边形的面积的一半。
【作业】:教材第93页练习二十第1、2题。
【板书设计】:
三角形的面积
三角形的面积是与它等底等高的平行四边形的面积的一半。
三角形的面积=底×高÷2
例2
S=ah÷2
=100×33÷2
=1650(cm2)
【教学(后记)反思】: