1.1 程序框图的画法 教案

文档属性

名称 1.1 程序框图的画法 教案
格式 zip
文件大小 32.1KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-12-04 14:25:46

图片预览

文档简介

1.1
程序框图的画法
教案
【教学目标】
掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构
掌握画程序框图的基本规则,能正确画出程序框图.
通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.
【教学重点】
经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构
【教学难点】
难点是能综合运用这些知识正确地画出程序框图.
【教学过程】
知识探究(一):多重条件结构的程序框图
思考1:解关于x的方程ax+b=0的算法步骤如何设计?
第一步,输入实数a,b.
第二步,判断a是否为0.若是,执行第三步;否则,计算
,并输出x,结束算法.
第三步,判断b是否为0.若是,则输出“方程的解为任意实数”;否则,输出“方程无实数解”.
思考2:该算法的程序框图如何表示?
思考3:你能画出求分段函数的值的程序框图吗?
知识探究(二):混合逻辑结构的程序框图
思考1:用“二分法”求方程的近似解的算法如何设计?
第一步,令f(x)=x2-2,给定精确度d.
第二步,确定区间
[a,b],满足f(a)·f(b)<0.
第三步,取区间中点
.
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,
b].将新得到的含零点的区间仍记为[a,b].
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
思考2:该算法中哪几个步骤可以用顺序结构来表示?这个顺序结构的程序框图如何?
思考3:该算法中第四步是什么逻辑结构?这个步骤用程序框图如何表示?
思考4:该算法中哪几个步骤构成循环结构?这个循环结构用程序框图如何表示?
思考5:根据上述分析,你能画出表示整个算法的程序框图吗?
知识探究(三):程序框图的阅读与理解
考察下列程序框图:
思考1:怎样理解该程序框图中包含的逻辑结构?
思考2:该程序框图中的循环结构属于那种类型?
思考3:该程序框图反映的实际问题是什么?
理论迁移

画出求三个不同实数中的最大值的程序框图.
小结
设计一个算法的程序框图的基本思路:
第一步,用自然语言表述算法步骤.
第二步,确定每个算法步骤所包含的逻辑结构,并用相应的程序框图表示.
第三步,将所有步骤的程序框图用流程线连接起来,并加上两个终端框.