首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修3
第二章 统计
本章复习与测试
第二章 统计 同步练习4(含答案)
文档属性
名称
第二章 统计 同步练习4(含答案)
格式
zip
文件大小
206.3KB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2016-12-06 11:10:08
点击下载
图片预览
1
2
3
4
5
文档简介
第二章
统计
同步练习
(时间:100分钟,满分:120分)
一、选择题(本大题共10小题.在每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的).
1.下列说法错误的是( )
A.在统计里,把所需考察对象的全体叫做总体
B.一组数据的平均数一定大于这组数据中的每个数据
C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势
D.一组数据的方差越大,说明这组数据的波动越大
解析:选B.平均数不大于最大值,不小于最小值.
2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )
A.简单随机抽样
B.按性别分层抽样
C.按学段分层抽样
D.系统抽样
解析:选C.由于三个学段学生的视力情况差别较大,故需按学段分层抽样.
3.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为( )
A.10组
B.9组
C.8组
D.7组
解析:选B.据题意:最大值与最小值的差为89,=8.9,故应分9组较合适.
4.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08
B.07
C.02
D.01
解析:选D.由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.
5.样本容量为100的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别是( )
A.32,0.4
B.8,0.1
C.32,0.1
D.8,0.4
解析:选A.落在[6,10)内频率为0.08×4=0.32,
100×0.32=32,∴a=32,
落在[2,10)内频率为(0.02+0.08)×4=0.4.
∴b=0.4.
6.在某项体育比赛中,七位裁判为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )
A.92,2
B.92,2.8
C.93,2
D.93,2.8
解析:选B.去掉最高分95,最低分89,所剩数据的平均值为(90×2+93×2+94)=92,方差s2=[(90-92)2×2+(93-92)2×2+(94-92)2]=2.8.
7.已知x与y之间的几组数据如下表:
x
1
2
3
4
5
6
y
0
2
3
3
4
假设根据上表数据所得线性回归直线方程为=x+.
若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( )
A.>b′,>a′
B.>b′,
C.
a′
D.
解析:选C.由(1,0),(2,2)求b′,a′.
b′==2,
a′=0-2×1=-2.
求,时,
iyi=0+4+3+12+15+24=58,
x=3.5,y=,
=1+4+9+16+25+36=91,
∴==,
=-×3.5=-=-,
∴
a′.
8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )
A.1%
B.2%
C.3%
D.5%
图1
图2
解析:选C.由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.
9.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是( )
A.高一的中位数大,高二的平均数大
B.高一的平均数大,高二的中位数大
C.高一的平均数、中位数都大
D.高二的平均数、中位数都大
解析:选A.由茎叶图可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为,所以高二的平均数大.故选A.
10.某工厂对一批产品进行了抽样检测,并根据抽样检测后的产品净重(单位:克)数据绘制了频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品个数是( )
A.90
B.75
C.60
D.45
解析:选A.产品净重小于100克的频率
P=(0.050+0.100)×2=0.3,
设样本容量为n,由已知得=0.3,
∴n=120.
而净重大于或等于98克而小于104克的产品的频率P′=(0.100+0.150+0.125)×2=0.75.
∴个数为0.75×120=90.故选A.
二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上)
11.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的数字特征(众数、中位数、平均数、方差或标准差)对应相同的是________.
解析:由s2=[(x1-x)2+(x2-x)2+…+(xn-x)
2],可知B样本数据每个变量增加2,平均数也增加了,但s2不变,故方差不变(或标准差).
答案:方差(标准差)
12.为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一学生抽取的人数是________.
解析:设抽取人数为x,则=,得x=40.
答案:40
某校开展“爱我海西,爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.
解析:最低分为88,最高分若为90+x,则计算平均分=≠91,所以最高分应为94,则有91×7-(89×2+92×2+93+91)=91,∴x=1.
答案:1
某种产品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如下一组数据:
广告费
2
4
5
6
8
销售额
30
40
60
50
70
则回归方程为________.
解析:=5,=50,=145iyi=1
380,
把数据代入公式,
可求得=17.5,=6.5,
故回归方程为=6.5x+17.5.
答案:=6.5x+17.5
15.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.
解析:在频率分布直方图中,所有小长方形的面积和为1,
设[70,80)的小长方形面积为x,则(0.01+0.015×2+0.025+0.005)×10+x=1,
解得x=0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.
答案:71
三、解答题(本大题共5小题,满分45分,解答要有详细文字说明过程)
有以下三个案例:
案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;
案例二:某公司有员工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入情况;
案例三:从某校1
000名高一学生中抽取10人参加一项主题为“学雷锋,树新风”的志愿者活动.
(1)你认为这些案例应采用怎样的抽样方式较为合适?
(2)在你使用的分层抽样案例中写出抽样过程;
(3)在你使用的系统抽样案例中按以下规定取得样本编号:如果在起始组中随机抽取的号码为L(编号从0开始),那么第K组(组号K从0开始,K=0,1,2,…,9)抽取的号码的百位数为组号,后两位数为L+31K的后两位数.若L=18,试求出K=3及K=8时所抽取的样本编号.
解:(1)案例一用简单随机抽样,案例二用分层抽样,案例三用系统抽样.
(2)①分层,将总体分为高级职称、中级职称、初级职称及其余人员四层;
②确定抽样比例k==;
③按上述比例确定各层样本数分别为8人、16人、10人、6人;
④按简单随机抽样方式在各层确定相应的样本;
⑤汇总构成一个容量为40的样本.
(3)K=3时,L+31K=18+31×3=111,故第三组样本编号为311.K=8时,L+31K=18+31×8=266,
故第8组样本编号为866.
某制造商为运动会生产一批直径为40
mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:
40.02 40.00 39.98 40.00 39.99
40.00 39.98 40.01 39.98 39.99
40.00 39.99 39.95 40.01 40.02
39.98 40.00 39.99 40.00 39.96
(1)完成下面的频率分布表,并画出频率分布直方图;
分组
频数
频率
[39.95,39.97)
[39.97,39.99)
[39.99,40.01)
[40.01,40.03]
合计
(2)假定乒乓球的直径误差不超过0.02
mm为合格品,若这批乒乓球的总数为10
000只,试根据抽样检查结果估计这批产品的合格只数.
解:(1)
分组
频数
频率
[39.95,39.97)
2
0.10
5
[39.97,39.99)
4
0.20
10
[39.99,40.01)
10
0.50
25
[40.01,40.03]
4
0.20
10
合计
20
1
50
(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,
∴合格率为×100%=90%,
∴10
000×90%=9
000(只).
即根据抽样检查结果,可以估计这批产品的合格只数为9
000.
18.甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.
解:(1)作出茎叶图如下:
(2)甲=(78+79+81+82+84+88+93+95)=85,
乙=(75+80+80+83+85+90+92+95)=85.
s=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,
s=[(75-85)2+
(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.
∵甲=乙,s<s,
∴甲的成绩较稳定,派甲参赛比较合适.
19.有5名学生的数学和化学成绩如下表所示:
学生学科
A
B
C
D
E
数学成绩(x)
88
76
73
66
63
化学成绩(y)
78
65
71
64
61
(1)如果y与x具有相关关系,求线性回归方程;
(2)预测如果某学生数学成绩为79分,他的化学成绩为多少?
解:(1)∵=×(88+76+73+66+63)=73.2,
=×(78+65+71+64+61)=67.8,
=882+762+732+662+632=27
174,
iyi=88×78+76×65+73×71+66×64+63×61=25
054
∴-52=27
174-5×73.22=382.8,
iyi-5=25
054-5×73.2×67.8=239.2,
设y与x的线性回归方程为=x+,
∴==≈0.625,
=-=67.8-0.625×73.2=22.05,
∴线性回归方程为y=22.05+0.625x.
(2)当x=79时,y=22.05+0.625×79=71.425,
即当某同学的数学成绩为79分时,他的化学成绩约为71分.
20.
PM2.5是指环境空气中当量直径小于等于25微米的颗粒物,对人体健康及环境影响很大.
某市2014年4月1日——4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成频率分布表;
(2)作出频率分布直方图;
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
解:(1)频率分布表:
分组
频数
频率
[41,51)
2
[51,61)
1
[61,71)
4
[71,81)
6
[81,91)
10
[91,101)
5
[101,111]
2
(2)频率分布直方图:
(3)答对下述两条中的一条即可:
(ⅰ)该市一个月中空气污染指数有2天处于优的水平,占当月天数的;有26天处于良的水平,占当月天数的;处于优或良的天数共有28天,占当月天数的.说明该市空气质量基本良好.
(ⅱ)轻微污染有2天,占当月天数的.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%.说明该市空气质量有待进一步改善.
点击下载
同课章节目录
第一章 算法初步
1.1 算法与程序框图
1.2 基本算法语句
1.3 算法与案例
第二章 统计
2.1 随机抽样
2.2 用样本估计总体
2.3 变量间的相关关系
第三章 概率
3.1 随机事件的概率
3.2 古典概型
3.3 几何概型
点击下载
VIP下载