2.4匀变速直线运动与汽车行驶安全 教案 (2)

文档属性

名称 2.4匀变速直线运动与汽车行驶安全 教案 (2)
格式 zip
文件大小 15.6KB
资源类型 教案
版本资源 粤教版
科目 物理
更新时间 2016-12-08 08:47:03

图片预览

文档简介

2.4匀变速直线运动与汽车行驶安全
教案
教学目标
1.
知识和技能
根据文字信息能在头脑中展现汽车在人体反应时间内的匀速直线运动和刹车时间内的匀减速直线运动的物理情景,建立物理模型。
会应用速度公式、位移公式和推理结论,结合汽车的运动分析解决问题。
2.
过程与方法
在探究问题的过程中,要培养学生良好的分析问题、处理问题的习惯:通过文字信息的慢慢品味(注意题目所包含的隐含条件),首先建立清晰的物理模型,眼前出现动态的物体运动情景;其次建立不同的物理过程与相应的物理规律之间的联系;再其次根据选取的正方向,判断物理量的正负号后正确列出物理方程,通过数学手段解题;最后将结果与命题对照,体会一下客观过程。
3.
情感态度与价值观
培养学生尊重实际的态度,树立辨证唯物主义观点。
培养学生树立牢固的安全意识,关爱生命。
学情分析
1.
学生完成了第三节的学习,已经掌握了匀变速直线运动的速度公式Vt=V0+at
,位移公式S=V0t+1/2at2
和推导而来的Vt2﹣V02=2as,尚缺乏对具体问题的分析应用。
2.
学生了解一般的安全行车要求:如不要超速、不要酒后驾驶、要保持一定的行车距离。但要究其原因,即要知其所以然,则缺少应用物理知识的科学论证。
3.
学生对与生活联系紧密且有一定了解的行车安全问题会感兴趣,给上好这一节课奠定了良好的基础,但由于部分学生物理基础差,在探究过程中缺乏自主能力。
重点难点
1.
重点:通过汽车安全行驶问题,培养学生应用匀变速直线运动规律分析问题、解决问题的能力
2.
难点:不善于挖掘题目中的隐含条件;不能正确选取加速度的正负号;不善于排除题目中多余的已知条件。
教学过程
活动1【导入】1. 导入新课
1.导入新课
老师进行全班统计:
请家里有汽车的同学举手;请开过汽车的同学举手;请开过摩托车的同学举手。
统计的结果肯定过半数,因为大部分同学都会开摩托车。统计的目的是把同学们的注意力集中起来,投入下面的问题中去。
老师:同学们都有一定的直接或间接驾驶机动车的经验,你们能说出几条安全行车的法规
根据同学们的回答老师进一步问:为什么要保持一定的行车距离为什么不可酒后驾车为什么不可超速驾驶今天我们全班同学一起利用上节课学习的匀变速直线运动的速度公式、位移公式和推导的结论来回答以上问题。在了解机动车驾驶安全法规的同时,我们学习用匀变速直线运动规律来分析问题、解决问题,这就是我们这节课要达到的教学目标。
活动2【讲授】讨论一:汽车行驶中为什么要保持车距 
讨论一:汽车行驶中为什么要保持车距
例1汽车在高速公路上行驶的速度为108km/h,若驾驶员发现前方80m处发生了交通事故,马上紧急刹车,汽车以恒定的加速度经过4s才停下来,问汽车是否会有安全问题
由于是第一题,为建立正确的思维过程和规范的解题模式,基本由老师带领同学分析:首先要指导学生养成慢慢审题的良好习惯,边读题边在头脑中构建物理模型,眼前要展现清晰的物理情景,汽车做匀减速直线运动。在此过程中,初速度为108km/h,即30m/s。汽车经4s停下来,似乎只有两个已知量,但仔细分析后发现,题中还隐含着一个条件:汽车刹车停止后末速度为0,问题应可解决。题中“前方80m处”这一条件,并不是汽车停下来的实际位移,它只作为判断是否安全的依据。
解:选汽车初速度方向为正方向,其加速度为
a=(Vt–V0)/t=(0–30)/4m/s2=–7.5m/s2
汽车由刹车到停止所经过的位移为
S=V0t+1/2at2=[30×4+1/2×(-7.5)×42]m=60m
由于前方距离有80m汽车经过60m就已停下来,所以不会有安全问题。
活动3【讲授】讨论二:上题中,汽车刹车后经4s停下来,试问驾驶员发现事故到汽车停下来是否也是4s 
教师指导学生看P32《实践与拓展》:“2.人对周围发生的事情,都需要一段时间来作出反应,从人发现情况到采取行动所经历的时间,称为反应时间。”
教师给学生设置第进式的问题供同学们探究:
驾驶员从发现事故到汽车停下来是4s或大于4S或小于4S(答案:大于4s)
请同学们构建从驾驶员发现事故到汽车停下来汽车运动的物理模型。(答案:汽车先做匀速直线运动,后做匀减速直线运动)
例2上题中驾驶员的反应时间是0.5s该汽车有安全问题吗
汽车在前后两个运动过程中的位移各是多少请同学们计算一下。
(答案:匀速直线运动位移S=Vt=(30×0.5)m=15m匀减速直线运动位移同上,为60m,汽车运动总位移为75m,所以依然没有安全问题。)
活动4【活动】 讨论三:为什么不允许酒后开车 (服用某些感冒药后,或老年人,或处于疲劳状态下都不易开车)
教师指导学生阅读课本:在通常情况下,驾驶者的反应时间与其注意力集中程度、驾驶经验和体力状态有关,平均约为0.5∽1.5s驾驶员酒后的反应时间则至少会增加2∽3倍。
例3若驾驶员酒后开车,反应时间为1.5s,上述汽车是否有安全问题
此题与例2同类型,所以由思维反应较慢的同学回答
解:匀速直线运动位移S=Vt=(30×1.5)m=45m
匀减速直线运动位移60m,总位移105m,汽车有安全问题。
服用某些感冒药后,或老年人,或处于疲劳状态都会延长反应时间,所以都不宜开车。
活动5【讲授】3.课堂小结 
这节课我们了解到行车安全的部分法规,而且知道了这些法规完全来自于运动学原理。
在论证这些法规的过程中,我们应用了运动学的公式,明确了一般的解题程序。学以致用,我们今后更要关爱生命,注意安全。
活动6【练习】课堂练习
[image
description]
1.如图所示为甲、乙两物体的st图象,则(
)
A.甲、乙两物体都做匀速直线运动
B.若甲、乙两物体在同一直线上运动,则一定会相遇
C.在t1时刻甲、乙相遇
D.在t2时刻甲、乙相遇
【答案】ABC
【解析】这是一个位移时间图象,从图象中可以直观地看出某时刻所对应的物体相对于坐标原点的位移以及位移的变化情况.图中甲、乙的函数图象都是一条直线,表示纵坐标随横坐标均匀变化,即位移随时间均匀变化,这样的运动就是匀速直线运动.两图线的交点表示相同的时刻距坐标原点有相同的位移,即相同的时刻处于相同的位置,物体相遇.选ABC.
2.一辆长途客车正在以v=20
m/s的速度匀速行驶,
突然,司机看见车的正前方s=45
m处有一只小狗(图甲),司机立即采取制动措施.从司机看见小狗到长途客车开始做匀减速直线运动的时间间隔Δt=0.5
s.若从司机看见小狗开始计时(t=0),该长途客车的速度时间图象如图乙所示.求:
(1)长途客车在Δt时间内前进的距离;
(2)长途客车从司机发现小狗至停止运动的这段时间内前进的距离;
(3)根据你的计算结果,判断小狗是否安全.如果安全,请说明你判断的依据;如果不安全,有哪些方式可以使小狗安全.
【答案】(1)10
m
(2)50
m
(3)不安全
【解析】(1)公共汽车在司机的反应时间内前进的距离
s1=vΔt=10
m.
(2)公共汽车从司机发现小狗至停止的时间内前进的距离
s2=s1+=50
m.
(3)因为s2>s,所以小狗不安全.
若要小狗不发生危险,可以采用如下的一些方式:
①小狗沿车的前进方向在4.5
s内跑出5
m以上的距离.
②小狗沿垂直运动的方向在4.5
s内跑出的距离超过车的宽度.
活动7【作业】课后作业
基础达标
一、选择题(在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求)
1.汽车甲沿着平直的公路以速度v0做匀速直线运动.当它经过某处的同时,该处有汽车乙开始做初速度为零的匀加速直线运动去追赶甲车,根据上述已知条件(
)
A.可求出乙车追上甲车时乙车的速度
B.可求出乙车追上甲车时乙车的路程
C.可求出乙车从开始启动到追上甲车时所用的时间
D.不能求出上述三者中的任一个
【答案】A
2.汽车从静止开始做匀加速运动,速度达到v时立即做匀减速运动,最后停止,全部时间为t,则汽车通过的全部位移为(
)
A.vt
B.
C.2vt
D.
【答案】B
3.汽车以20
m/s的速度做匀速直线运动,刹车后的加速度大小为5
m/s2,那么开始刹车后2
s内与开始刹车后6
s内汽车通过的位移之比为(
)
A.1∶1
B.3∶1
C.3∶4
D.4∶3
【答案】C
【解析】汽车停止所用时间t2==4
s,所以刹车后2
s内与6
s内汽车通过的位移之比==.
4.一辆汽车在平直公路上做刹车实验,0时刻起运动过程的位移与时间的关系式为s=(10t-0.1t2)
m,下列分析正确的是(
)
A.上述过程的加速度大小为10
m/s2
B.刹车过程持续的时间为5
s
C.0时刻的初速度为10
m/s
D.刹车过程的位移为5
m
【答案】C
【解析】根据公式s=v0t+at2和位移与时间的关系式s=(10t-0.1t2)m可得刹车初速度和加速度为v0=10
m/s,a=-0.2
m/s2,故A错误,C正确;由公式v=v0+at可得:刹车时间t0==50
s,故B错误;刹车位移为s0=t0=250
m,故D错误.
5.某质点沿一条直线运动,它在前2
s的位移为2
m,前5
s的位移为5
m,前10
s的位移为10
m,则该质点的运动(
)
A.一定是匀速直线运动
B.可能是匀速直线运动
C.若是匀速直线运动,它在前6
s内的位移是6
m
D.若是匀速直线运动,它在每秒内的位移都是1
m
【答案】BCD
【解析】匀速直线运动的定义是:任何相等的时间内的位移相等.题设中的条件并不能得到这个结论.比如前2
s的位移为2
m,有可能第1
s的位移为1.5
m,第2
s的位移为0.5
m,这样也能得到前2
s的位移为2
m,所以B、C、D正确.
[image
description]
6.如图所示为甲、乙两物体的st图象,则(
)
A.甲、乙两物体都做匀速直线运动
B.若甲、乙两物体在同一直线上运动,则一定会相遇
C.在t1时刻甲、乙相遇
D.在t2时刻甲、乙相遇
【答案】ABC
【解析】这是一个位移时间图象,从图象中可以直观地看出某时刻所对应的物体相对于坐标原点的位移以及位移的变化情况.图中甲、乙的函数图象都是一条直线,表示纵坐标随横坐标均匀变化,即位移随时间均匀变化,这样的运动就是匀速直线运动.两图线的交点表示相同的时刻距坐标原点有相同的位移,即相同的时刻处于相同的位置,物体相遇.选ABC.
7.如图为一个运动物体的vt图象,已知两段图线和t轴所围的面积分别为S1、S2,则对于匀加速和匀减速阶段描述正确的是(
)
A.两段加速度的大小之比=
B.两段平均速度的比=
C.两段平均速度的比=
D.两段时间的比=
【答案】ACD
【解析】加速阶段v2-0=2a1S1,减速阶段0-v2=2a2S2,故=,A正确;两个阶段的平均速度1=2=,B错C对;因为S1=1t1,S2=2t2,所以=,D正确.
8.做初速度不为零的匀加速直线运动的物体,在时间T内通过位移s1到达点A,接着在时间T内又通过位移s2到达B点,则以下判断正确的是(
)
A.物体在A点的速度大小为
B.物体运动的加速度为
C.物体运动的加速度为
D.物体在B点的速度大小为
【答案】AC
二、非选择题
9.汽车以10
m/s的速度行驶,刹车后的加速度大小为3
m/s2,求它向前滑行12.5
m后的瞬时速度.
【答案】5
m/s
方向与初速度方向相同
【解析】设汽车的初速度方向为正方向,则v0=10
m/s,a=-3
m/s2,s=12.5
m,由推导公式v2-v=2as,得v2=v+2as=[102+2×(-3)×12.5]m2/s2=25
m2/s2,
所以v1=5
m/s,v2=-5
m/s(舍去),即汽车向前滑行12.5
m后的瞬时速度大小为5
m/s,方向与初速度方向相同.
能力提升
10.一列火车从静止开始做匀加速直线运动,一人站在第一节车厢前端的旁边观测,第一节车厢通过他历时2
s,整列车厢通过他历时6
s,则这列火车的车厢有(
)
A.3节
B.6节
C.9节
D.12节
【答案】C
【解析】设一节车厢长为L,则L=at,nL=at,
将t1=2
s,t2=6
s代入上面两式,解得n=9.
11.(多选)a、b两物体从同一位置沿同一直线运动,它们的速度图象如下图所示,下列说法正确的是(
)
A.a、b加速时,物体b的加速度大于物体a的加速度
B.20
s时,a、b两物体相距最远
C.60
s时,物体a在物体b的前方
D.40
s时,a、b两物体速度相等,相距
200
m
【答案】AC
【解析】由图线可看出物体b的加速度大于a的加速度,A正确;40
s时,a、b两物体速度相等,相距最远,最远距离为900
m,故B、D错C对.
12.一辆长途客车正在以v=20
m/s的速度匀速行驶,
突然,司机看见车的正前方s=45
m处有一只小狗(图甲),司机立即采取制动措施.从司机看见小狗到长途客车开始做匀减速直线运动的时间间隔Δt=0.5
s.若从司机看见小狗开始计时(t=0),该长途客车的速度时间图象如图乙所示.求:
(1)长途客车在Δt时间内前进的距离;
(2)长途客车从司机发现小狗至停止运动的这段时间内前进的距离;
(3)根据你的计算结果,判断小狗是否安全.如果安全,请说明你判断的依据;如果不安全,有哪些方式可以使小狗安全.
【答案】(1)10
m
(2)50
m
(3)不安全
【解析】(1)公共汽车在司机的反应时间内前进的距离
s1=vΔt=10
m.
(2)公共汽车从司机发现小狗至停止的时间内前进的距离
s2=s1+=50
m.
(3)因为s2>s,所以小狗不安全.
若要小狗不发生危险,可以采用如下的一些方式:
①小狗沿车的前进方向在4.5
s内跑出5
m以上的距离.
②小狗沿垂直运动的方向在4.5
s内跑出的距离超过车的宽度.