首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修3
第三章 概率
3.1 随机事件的概率
3.1.1随机事件的概率
3.1.1 随机事件的概率 同步练习2(含答案)
文档属性
名称
3.1.1 随机事件的概率 同步练习2(含答案)
格式
zip
文件大小
26.9KB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2016-12-06 18:53:40
点击下载
图片预览
1
2
文档简介
3.1.1
随机事件的概率
同步练习
一、选择题
1.下列事件中,不可能事件为( )
A.钝角三角形两个小角之和小于90°
B.三角形中大边对大角,大角对大边
C.锐角三角形中两个内角和小于90°
D.三角形中任意两边的和大于第三边
[答案] C
[解析] 若两内角的和小于90°,则第三个内角必大于90°,故不是锐角三角形,∴C为不可能事件,而A、B、D均为必然事件.
2.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是( )
A.3个都是正品
B.至少有一个是次品
C.3个都是次品
D.至少有一个是正品
[答案] D
[解析] A、B都是随机事件,因为只有2个次品,所以“抽出的三个全是次品”是不可能事件,“至少有一个是正品”是必然事件.
3.下列事件:
①如果a>b,那么a-b>0.
②任取一实数a(a>0且a≠1),函数y=logax是增函数.
③某人射击一次,命中靶心.
④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.
其中是随机事件的为( )
A.①②
B.③④
C.①④
D.②③
[答案] D
[解析] ①是必然事件;②中a>1时,y=logax单调递增,0
4.某人将一枚硬币连掷了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )
A.概率为
B.频率为
C.频率为6
D.概率接近0.6
[答案] B
[解析] 抛掷一次即进行一次试验,抛掷10次,正面向上6次,即事件A的频数为6,∴A的频率为=.∴选B.
5.下列说法中,不正确的是( )
A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8
B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7
C.某人射击10次,击中靶心的频率是,则他应击中靶心5次
D.某人射击10次,击中靶心的频率是0.
6,则他击不中靶心的次数应为4
[答案] B
6.从存放号码分别为1,2,…,10的卡片的盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:
卡片号码
1
2
3
4
5
6
7
8
9
10
取到的次数
13
8
5
7
6
13
18
10
11
9
则取到号码为奇数的频率是( )
A.0.53
B.0.5
C.0.47
D.0.37
[答案] A
[解析] 取到号码为奇数的卡片共有13+5+6+18+11=53(次),所以取到号码为奇数的频率为=0.53.
二、填空题
7.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.
[答案] 500
[解析] 设共进行了n次试验,
则=0.02,解得n=500.
8.一家保险公司想了解汽车挡风玻璃破碎的概率,公司收集了20
000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为________.
[答案] 0.03
[解析] 在一年里汽车的挡风玻璃破碎的频率为=0.03,所以估计其破碎的概率约为0.03.
9.某人进行打靶练习,共射击10次,其中有2次10环,3次9环,4次8环,1次脱靶,在这次练习中,这个人中靶的频率是________,中9环的概率是________.
[答案] 0.9 0.3
[解析] 打靶10次,9次中靶,故中靶的概率为=0.9,其中3次中9环,故中9环的频率是=0.3.
三、解答题
10.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.
(1)写出这个试验的所有可能结果.
(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.
[解析] (1)试验所有结果:a1,a2;a1,b1;a2,b1;a2,a1;b1,a1;b1,a2.共6种.
(2)事件A对应的结果为:a1,b1;a2,b1;b1,a1;b1,a2.
11.(2013·天津高考节选)某产品的三个质量指标分别为x、y、z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号
A1
A2
A3
A4
A5
质量指数(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,
1)
产品编号
A6
A7
A8
A9
A10
质量指数(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
利用上表提供的样本数据估计该批产品的一等品率.
[分析] 先计算10件产品的综合指标以及其中满足S≤4的产品个数,算出这次统计样本的一等品率,再估计该批产品的等品率.
[解析] 计算10件产品的综合指标S,如下表:
产品编号
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
S
4
4
6
3
4
5
4
5
3
5
其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6,从而可估计该批产品的一等品率为0.6.
12.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:
分组
频数
[1.30,1.34)
4
[1.34,1.38)
25
[1.38,1.42)
30
[1.42,1.46)
29
[1.46,1.50)
10
[1.50,1.54)
2
合计
100
(1)请作出频率分布表,并画出频率分布直方图;
(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?
[解析] (1)频率分布表如下表.
分组
频数
频率
[1.30,1.34)
4
0.04
[1.34,1.38)
25
0.25
[1.38,1.42)
30
0.30
[1.42,1.46)
29
0.29
[1.46,1.50)
10
0.10
[1.50,1.54)
2
0.02
合计
100
1.00
频率分布直方图如图所示.
(2)纤度落在[1.38,1.50)中的频数是30+29+10=69,
则纤度落在[1.38,1.50)中的频率是=0.69,
所以估计纤度落在[1.38,1.50)中的概率为0.69.
纤度小于1.40的频数是4+25+×30=44,
则纤度小于1.40的频率是=0.44,
所以估计纤度小于1.40的概率是0.44.
点击下载
同课章节目录
第一章 算法初步
1.1 算法与程序框图
1.2 基本算法语句
1.3 算法与案例
第二章 统计
2.1 随机抽样
2.2 用样本估计总体
2.3 变量间的相关关系
第三章 概率
3.1 随机事件的概率
3.2 古典概型
3.3 几何概型
点击下载
VIP下载