课件9张PPT。1.2 应用举例例3 AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高。由解直角三角形的知识,只要能测出一点C到建筑物的顶部A的距离CA,并测出由点C观察A的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA的长。解:选择一条水平基线HG,使H,G,B三点在同一条直线上。由在H,G两点用测角仪器测得A的仰角分别是α,β,CD=a,测角仪器的高是h.那么,在⊿ACD中,根据正弦定理可得例3 AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法例4 在山顶铁塔上B处测得地面上一点A的俯角α=54°40′,在塔底C处测得A处的俯角β=50°1′。已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)分析:根据已知条件,应该设法计算出AB或AC的长解:在⊿ABC中,∠BCA=90°+β, ∠ABC=90°-α, ∠BAC=α-β, ∠BAD=α.根据正弦定理,CD=BD-BC≈177-27.3=150(m)答:山的高度约为150米。zxxkw例5 一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15°的方向上,行驶5km后到达B处,测得此山顶在东偏南25°的方向上,仰角8°,求此山的高度CD.分析:要测出高CD,只要测出高所在的直角三角形的另一条直角边或斜边的长。根据已知条件,可以计算出BC的长。例5 一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15°的方向上,行驶5km后到达B处,测得此山顶在东偏南25°的方向上,仰角8°,求此山的高度CD.解:在⊿ABC中,∠A=15°,
∠C=25°-15°=10°.
根据正弦定理,CD=BC×tan∠DBC≈BC×tan8°≈1047(m)答:山的高度约为1047米。在⊿ABC中,若B=60°,2b=a+c,试判断⊿ABC的形状。zxxkwzxxkw课件9张PPT。1.2 应用举例 例6 一艘海轮从A出发,沿北偏东75°的方向航行67.5n mile后到达海岛B,然后从B出发,沿北偏东32°的方向航行54.0n mile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离(角度精确到0.1°,距离精确到0.01n mile)?解:在⊿ABC中,∠ABC=180°-75°+32°=137°,根据余弦定理,所以,∠CAB=19.0°,
75°-∠CAB=56.0°.答:此船应该沿北偏东56.0°的方向航行,需要航行113.15n mile.例7 在⊿ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2)(1)已知a=14.8cm,c=23.5cm,B=148.5°;(2)已知B=62.7°,C=65.8°,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.zxxkw例8 在某市进行城市环境建设中,要把一个三角形的区域改造成市内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少(精确到0.1cm2)?解:设a=68m,b=88m,c=127m,根据余弦定理的推论,zxxkw 在任一 中,求证: 在⊿ABC中,若B=60°,2b=a+c,试判断⊿ABC的形状。zxxkwzxxkw