2.2 等差数列 课件3

文档属性

名称 2.2 等差数列 课件3
格式 zip
文件大小 260.1KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-12-08 10:21:33

图片预览

文档简介

课件16张PPT。2.2 等差数列在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:(1)1682,1758,1834,1910,1986,( )你能预测出下一次的大致时间吗?2062相差76你能根据规律在()内填上合适的数吗?(3)1,4,7,10,( ),16,…(4)2, 0, -2, -4, -6,( )…(1)1682,1758,1834,1910,1986,( ).(2)32, 25.5, 19, 12.5, 6,( ), … 13 -8 2062-0.5定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个常数叫做等差数列的公差,公差通常用字母d表示.这个数列就叫做等差数列.它们的共同的规律是?(1)1682,1758,1834,1910,1986,(2062).(2)32, 25.5, 19, 12.5, 6, (-0.5), …(3)1,4,7,10,(13),16,…(4)2, 0, -2, -4, -6,(-8 )…它们是等差数列吗?(6) 5,5,5,5,5,5,…公差 d=0 常数列(5) 1, 3, 5, 7, 9, 2, 4, 6, 8 ×等差数列的通项公式如果一个数列是等差数列,它的公差是d,那么 n=1时亦适合迭加得…等差数列的通项公式1. 求等差数列3,7,11,…的第4,7,10项;2. 100是不是等差数列2,9,16,…中的项?3. -20是不是等差数列0,- ,-7…中的项;练一练(舍)例1.在等差数列中,已知a5=10,a12=31,解:由题意可知  这是一个以 和 为未知数的二元一次方程组,解这个方程组,得即这个等差数列的首项是-2,公差是3.求首项a1与公差d.练一练 在等差数列中 在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:(1)2 ,( ) , 4 (2)-12,( ) ,0 3-6 如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差中项.思 考( 3 ) , ( ) , 300< 83+5×(n-1)500巩固练习1.等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1,
则 a 等于( )

A. 1 B. -1 C.- D.2. 在数列{an}中a1=1,an= an+1+4,则a10= .(-3a-5 )-(a-6)=(-10a-1) -(-3a-5 )提示:提示:d=an+1- an=-43. 在等差数列{an}中a1=83,a4=98,则这个数列有
多少项在300到500之间? -35提示:n=45,46,…,8440A (1)注意定义中“从第2项起”这一前提条件.这一条件有两层意义,其一,第一项前面没有项,无法与后续条件中“与前一项的差”相吻合;其二,必须从第2项起保证使数列中各项均与其前面一项作差.如若不然,从第3项(或第4项,…)起作差,则势必遗漏前若干项.课堂小结1.在学习等差数列的定义时,应注意如下问题
学习等差数列定义时需注意以下三点:
(2)注意定义中“每一项与它的前一项的差”这一运算要求,它的含义也有两个,其一是强调作差的顺序,即后面的项减前面的项,其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求.这一要求可理解为每一项与前面一项的差是常数且是同一个常数,否则这个数列不能称为等差数列.2.判断一个数列是等差数列的常用方法
(1)定义法:利用an-an-1=d(常数)(n≥2且n∈N*)等价于{an}是等差数列.
(2)等差中项法:2an=an-1+an+1(n≥2且n∈N*)等价于{an}是等差数列.
(3)an=kn+b(k,b为常数,n∈N*)等价于{an}是等差数列.谢谢观看!