3.3.2
简单线性规划问题
教案
教学目标
一、知识与技能?
1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;
2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.
二、过程与方法?
1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;?
2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.
三、情感态度与价值观?
1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;?
2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.
教学重点
能进行简单的二元线形规划问题
教学难点
从实际情景中抽象出一些简单的二元线形规划问题,列出线性目标函数并求最值并能加以解决.
教学过程
一.复习准备:
什么是目标函数?线形目标函数?线形规划?可行解?可行域?
二.讲授新课:
1.出示例题:营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.
1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.
为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时使用食物A和食物B多少?
教师分析——师生共同列出表格——转化成数学模型——列出目标函数——求最值
2.练习:某校伙食长期以面粉和大米为主食,面食每100g含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应该如何配置盒饭,才能既科学有费用最少?(答案:面食百克,米食百克)
3.小结:线性规划问题首先要根据实际问题列出表达约束条件的不等式,然后分析目标函数中所求量的几何意义,由数形结合思想求解问题.
利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,关键在于找出约束条件与目标函数,准确地描可行域,再利用图形直观求得满足题设的最优解.
三.
巩固练习:
1.
设满足约束条件,则的最大值是
(答案:5)
项目
甲
乙
丙
维生素A(单位/千克)
600
700
400
维生素B(单位/千克)
800
400
500
维生素C(单位/千克)
11
9
4
2.甲,乙,丙三种食物维生素A,B含量以及成本如右表:某食物营养研究所想用千克甲种食物,千克乙种食物,千克丙种食物配成100千克混合物,并使混合物至少含有56000单位维生素A和63000单位维生素B.
试用表示混合物的成本P(元);并确定的值,使成本最低,并求最低成本.