3.4 生活中的优化问题举例 教案

文档属性

名称 3.4 生活中的优化问题举例 教案
格式 zip
文件大小 104.8KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-12-10 16:43:57

图片预览

文档简介

3.4
生活中的优化问题举例
教案
教学目标:
1.
使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用
2.
提高将实际问题转化为数学问题的能力
教学重点:
利用导数解决生活中的一些优化问题.
教学难点:
利用导数解决生活中的一些优化问题.
教学过程:
一.创设情景
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.
二.新课讲授
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1、与几何有关的最值问题;
2、与物理学有关的最值问题;
3、与利润及其成本有关的最值问题;
4、效率最值问题。
解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.
三.典例分析
例1.海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?
解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为

求导数,得

令,解得舍去)。
于是宽为。
当时,<0;当时,>0.
因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。
答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。
例2.饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?
【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是分,其中
是瓶子的半径,单位是厘米。已知每出售1
mL的饮料,制造商可获利
0.2
分,且制造商能制作的瓶子的最大半径为
6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
解:由于瓶子的半径为,所以每瓶饮料的利润是

解得
(舍去)
当时,;当时,.
当半径时,它表示单调递增,即半径越大,利润越高;
当半径时,
它表示单调递减,即半径越大,利润越低.
(1)半径为cm
时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
(2)半径为cm时,利润最大.
换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?
有图像知:当时,,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值.
当时,,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm
时,利润最小.
例3.磁盘的最大存储量问题
计算机把数据存储在磁盘上.磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区.磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域.磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit).为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.
(1)
是不是越小,磁盘的存储量越大?
(2)
为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量
×
(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.
(2)为求的最大值,计算.
令,解得
当时,;当时,.
因此时,磁盘具有最大存储量。此时最大存储量为
例4.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?
解:设圆柱的高为h,底半径为R,则表面积
S=2πRh+2πR2
由V=πR2h,得,则
S(R)=
2πR+
2πR2=+2πR2

+4πR=0
解得,R=,从而h====2
即h=2R
因为S(R)只有一个极值,所以它是最小值
答:当罐的高与底直径相等时,所用材料最省
变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
提示:S=2+h=
V(R)=R=
)=0

四.课堂练习
1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.(高为1.2
m,最大容积)
五.回顾总结
1.利用导数解决优化问题的基本思路:
2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。
例4.在边长为60
cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
解法一:设箱底边长为xcm,则箱高cm,得箱子容积


=0,解得
x=0(舍去),x=40,
并求得V(40)=16
000
由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16
000是最大值
答:当x=40cm时,箱子容积最大,最大容积是16
000cm3
例5.在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。
(1)、如果C(x)=,那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量)
(2)、如果C(x)=50x+10000,产品的单价P=100-0.01x,那么怎样定价,可使利润最大?
变式:已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?
分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.
解:收入,
利润
令,即,求得唯一的极值点
答:产量为84时,利润L最大
例6.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b.
解:由梯形面积公式,得S=
(AD+BC)h,其中AD=2DE+BC,DE=h,BC=b
∴AD=h+b,
∴S=

∵CD=,AB=CD.∴l=×2+b

由①得b=h,代入②,∴l=
l′==0,∴h=,
当h<时,l′<0,h>时,l′>0.
∴h=时,l取最小值,此时b=
例7.已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y
=4-x2在x轴上方的曲线上,求这种矩形中面积最大者的边长.
【解】设位于抛物线上的矩形的一个顶点为(x,y),且x
>0,y
>0,
则另一个在抛物线上的顶点为(-x,y),
在x轴上的两个顶点为(-x,0)、(x,0),其中0<
x
<2.
设矩形的面积为S,则S
=2
x(4-x2),0<
x
<2.
由S′(x)=8-6
x2=0,得x
=,易知
x
=是S在(0,2)上的极值点,
即是最大值点,
所以这种矩形中面积最大者的边长为和.
【点评】
应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值.
练习:1:一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?
【解】假设每次进书x千册,手续费与库存费之和为y元,
由于该书均匀投放市场,则平均库存量为批量之半,即,故有
y
=×30+×40,y′=-+20,
令y′=0,得x
=15,且y″=,f″(15)>0,
所以当x
=15时,y取得极小值,且极小值唯一,

当x
=15时,y取得最小值,此时进货次数为=10(次).
即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.
2:有甲、乙两城,甲城位于一直线形河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省?
【解】设水厂D点与乙城到岸的垂足B点之间的距离为x千米,总费用为y元,
则CD
=.
y
=500(50-x)+700
=25000-500
x
+700,
y′=-500+700
·
(x
2+1600)·
2
x
=-500+,
令y′=0,解得x
=.
答:水厂距甲距离为50-千米时,总费用最省.
点评:
当要求的最大(小)值的变量y与几个变量相关时,我们总是设几个变量中的一个为x,然后会根据条件用x来表示其他的变量,并写出y的函数表达式.
建立数学模型
解决数学模型
作答
用函数表示的数学问题
优化问题
用导数解决数学问题
优化问题的答案
_
x
_
x
_
60
_
60
x
x