3.4
生活中的优化问题举例
同步练习
一、选择题
1.某箱子的容积与底面边长x的关系为V(x)=x2
(0A.30
B.40
C.50
D.其他
2.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )
A.13万件
B.11万件
C.9万件
D.7万件
3.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时堆料场的长和宽分别为( )
A.32米,16米
B.30米,15米
C.40米,20米
D.36米,18米
4.若底面为等边三角形的直棱柱的体积为V,则其表面积最小时,底面边长为( )
A.
B.
C.
D.2
5.要做一个圆锥形的漏斗,其母线长为20
cm,要使其体积最大,则高为( )
A.
cm
B.
cm
C.
cm
D.
cm
6.某公司生产某种产品,固定成本为20
000元,每生产一单位产品,成本增加100元,已知总收益r与年产量x的关系是r=,则总利润最大时,年产量是( )
A.100
B.150
C.200
D.300
二、填空题
7.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在离车站________千米处.
8.如图所示,一窗户的上部是半圆,下部是矩形,如果窗户面积一定,窗户周长最小时,x与h的比为________.
9.做一个无盖的圆柱形水桶,若需使其体积是27π,且用料最省,则圆柱的底面半径为________.
三、解答题
10.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素.记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
11.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.
(1)将一个星期的商品销售利润表示成x的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
12.某单位用2
160万元购得一块空地,计划在该块地上建造一栋至少10层、每层2
000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
13.已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为p=25-q,求产量q为何值时,利润L最大.