2.2.1
双曲线及其标准方程
同步练习
一、选择题
1.已知平面上定点F1、F2及动点M,命题甲:||MF1|-|MF2||=2a(a为常数),命题乙:M点轨迹是以F1、F2为焦点的双曲线,则甲是乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.若ax2+by2=b(ab<0),则这个曲线是( )
A.双曲线,焦点在x轴上
B.双曲线,焦点在y轴上
C.椭圆,焦点在x轴上
D.椭圆,焦点在y轴上
3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )
A.x2-=1
B.-y2=1
C.y2-=1
D.-=1
4.双曲线-=1的一个焦点为(2,0),则m的值为( )
A.
B.1或3
C.
D.[
5.一动圆与两圆:x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹为( )
A.抛物线
B.圆
C.双曲线的一支
D.椭圆
6.已知双曲线中心在坐标原点且一个焦点为F1(-,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则该双曲线的方程是( )
A.-y2=1
B.x2-=1
C.-=1
D.-=1
二、填空题
7.设F1、F2是双曲线
-y2=1的两个焦点,点P在双曲线上,且·=0,则|PF1|·|PF2|=______.
8.已知方程-=1表示双曲线,则k的取值范围是________.
9.F1、F2是双曲线-=1的两个焦点,P在双曲线上且满足|PF1|·|PF2|=32,则∠F1PF2=______.
三、解答题
10.设双曲线与椭圆+=1有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求此双曲线的标准方程.
11.在△ABC中,B(4,0)、C(-4,0),动点A满足sin
B-sin
C=sin
A,求动点A的轨迹方程.
能力提升
12.若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则·的取值范围为( )
A.[3-2,+∞)
B.[3+2,+∞)
C.[-,+∞)
D.[,+∞)
13.已知双曲线的一个焦点为F(,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-,求双曲线的标准方程.2.2
双曲线及其标准方程
同步练习
一、选择题
1.双曲线3x2-4y2=-12的焦点坐标为( )
A.(±5,0)
B.(0,±)
C.(±,0)
D.(0,±)
2.已知方程-=1表示双曲线,则k的取值范围是( )
A.-1B.k>0
C.k≥0
D.k>1或k<-1
3.椭圆+=1与双曲线-=1有相同的焦点,则m的值是( )
A.±1
B.1
C.-1
D.不存在
4.已知点F1(-4,0)和F2(4,0),曲线C上的动点P到F1、F2距离之差为6,则曲线C的方程为( )
A.-=1
B.-=1(y>0)[
C.-=1或-=1
D.-=1(x>0)
5.与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是( )
A.-y2=1
B.-y2=1
C.-=1
D.x2-=1
6.已知双曲线的左、右焦点分别为F1、F2,过F1的直线与双曲线的左支交于A、B两点,线段AB的长为5,若2a=8,那么△ABF2的周长是( )
A.16
B.18
C.21
D.26
二、填空题
7.双曲线的焦点在x轴上,且经过点M(3,2)、N(-2,-1),则双曲线标准方程是________.
8.双曲线-y2=1的一个焦点为F(3,0),则m=________.
9.已知双曲线x2-=1的焦点为F1、F2,点M在双曲线上且·=0,则点M到x轴的距离为________.
三、解答题
10.求满足下列条件的双曲线的标准方程.
(1)焦点在x轴上,c=且经过点(-5,2);
(2)过P(3,)和Q(-,5)两点.