14.2.1两边及其夹角分别相等的两个三角形全等 导学案

文档属性

名称 14.2.1两边及其夹角分别相等的两个三角形全等 导学案
格式 zip
文件大小 126.7KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2016-12-13 16:09:17

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
1.两边及其夹角分别相等的两个三角形
学习目标
1.三角形全等的“边角边”的条件.
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3.掌握三角形全等的“SAS”条件.
4.能运用“SAS”证明简单的三角形全等问题.
学习重点:
三角形全等的条件.
学习难点:
寻求三角形全等的条件.
学习方法:自主学习与小组合作探究
学习过程:
一、:温故知新
1.怎样的两个三角形是全等三角形?
2.全等三角形的性质?
二、读一读,想一想,画一画,议一议
1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?
2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?
阅读:课本
总结:通过我们画图
可以发现只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形不一定全等;给出两个条件画出的两个三角形也不一定全等,按这些条件画出的三角形都不能保证一定全等.
给出三个条件画三角形,你能说出有几种可能的情况吗?
归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.
在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.21世纪教育网版权所有
3、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:
AO=CO,
∠AOB=
∠COD,
BO=DO.
如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB
=∠COD,
OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.21教育网
由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.
4.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:
(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取
B、C,使
AB=3.1cm,
AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.21cnjy.com
(2)如果把△A'B'C'剪下来放到△ABC上,想一想△A'B'C'与△ABC是否能够完全重合?
5.“边角边”公理.
有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)
书写格式:
在△ABC和△
A1B1C1中

△ABC≌△
A1B1C1(SAS)
用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SAS”是证明三角形全等的一个依据..
三、小组合作学习
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________还需要一个条件_____________(这个条件可以证得吗?).21·cn·jy·com
四、阅读例题:
五、评价反思
概括总结:
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
六、作
业:
七、深化提高
1.已知:如图,AB=AC,F、E分别是AB、AC的中点.
求证:△ABE≌△ACF.
2.已知:点A、F、E、C在同一条直线上,
AF=CE,BE∥DF,BE=DF.
求证:△ABE≌△CDF.
3、已知:
AD∥BC,AD=
CB,AE=CF(图3).
求证:△ADF≌△CBE
21世纪教育网
--
中国最大型、最专业的中小学教育资源门户网站。
版权所有@21世纪教育网