14.2.3三边分别相等的两个三角形(导学案)

文档属性

名称 14.2.3三边分别相等的两个三角形(导学案)
格式 zip
文件大小 124.9KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2016-12-14 14:22:51

图片预览

文档简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
3.三边分别相等的两个三角形
学习目标
1.三角形全等的“边边边”的条件.
2.了解三角形的稳定性.
3.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
学习重点
三角形全等的条件.
学习难点
寻求三角形全等的条件.
学习方法:自主学习与小组合作探究
学习过程:
一.回顾思考:
1.(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:①定义__________________________________________________;
②“SAS”公理__________________________________________________
③“ASA”定理__________________________________________________
二、新课
1.
回忆前面研究过的全等三角形.
已知△ABC≌△A′B′C′,找出其中相等的边与角.
图中相等的边是:AB=A′B、BC=B′C′、AC=A′C.
相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.
2.已知三角形△ABC你能画一个三角形与它全等吗?怎样画?
阅读教材
归纳:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.
书写格式:
在△ABC和△A1B1C1中

△ABC≌△A1B1C1(SSS)
3.
小组合作学习
(1)如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:△ABD≌△ACD.
证明:∵D是BC的中点
∴__________________________
在△ABD和△ACD中
∴△
≌△

).
(2)如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有一个条件:______________________,怎样才能得到这个条件?
∵__________________________
∴__________________________
∴__________________________
(3)如图,AB=AC,
AD是BC边上的中线P是AD
的一点,求证:PB=PC
4.三角形的稳定性:
生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.例如屋顶的人字梁、大桥钢架、索道支架等.(阅读P98)21世纪教育网版权所有
三、阅读教材例题:
四.自学检测
五.评价反思
概括总结
1.
本节课我们探索得到了三角形全等的条件,又发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.21教育网
2.到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
①定义__________________________________________________;
②“SAS”公理__________________________________________________
③“ASA”定理_________________________________________________
④“SSS”定理_________________________________________________
六.作业
21世纪教育网
--
中国最大型、最专业的中小学教育资源门户网站。
版权所有@21世纪教育网