2.3.1 双曲线及其标准方程 课件2

文档属性

名称 2.3.1 双曲线及其标准方程 课件2
格式 zip
文件大小 1.9MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-12-14 17:21:27

图片预览

文档简介

课件20张PPT。第二章 圆锥曲线与方程2.3.1 双曲线及其标准方程 1. 椭圆的定义2. 引入问题:复习|MF1|+|MF2|=2a( 2a>|F1F2|>0) 注意:
1.距离之和;
2.2a>2c>0①如图(A), |MF1|-|MF2|=|F2F|=2a②如图(B),上面 两条合起来叫做双曲线由①②可得: | |MF1|-|MF2| | = 2a
(差的绝对值) |MF2|-|MF1|=|F1F|=2a① 两个定点F1、F2——双曲线的焦点;② |F1F2|=2c ——焦距.⑴距离之差的绝对值; 平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.⑵ 0<2a<2c ;双曲线定义思考:(1)若2a=2c,则轨迹是什么?(2)若2a>2c,则轨迹是什么?注意:(3)若2a=0,则轨迹是什么? | |MF1| - |MF2| | = 2a(1)两条射线(2)不表示任何轨迹(3)线段F1F2的垂直平分线求曲线方程的步骤:双曲线的标准方程1. 建系.以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系2.设点.设M(x , y),则F1(-c,0),F2(c,0)3.列式|MF1| - |MF2|=±2a4.化简此即为焦点在x轴上的双曲线的标准方程若建系时,焦点在y轴上呢?2、双曲线的标准方程与椭圆的标准方程有何区别与联系?1、如何判断双曲线的焦点在哪个轴上?问题F(±c,0)F(±c,0)a>0,b>0,但a不一定大于b,c2=a2+b2a>b>0,a2=b2+c2双曲线与椭圆之间的区别与联系||MF1|-|MF2||=2a |MF1|+|MF2|=2a F(0,±c)F(0,±c)分母大小系数正负知识总结:为什么写出满足下列条件的双曲线的标准方程练习1.a=4,b=3,焦点在x轴上;
2.焦点为(0,-6),(0,6),过点(2,5)
3. 使A、B两点在x轴上,并且点O与线段AB的中点重合解: 由声速及在A地听到炮弹爆炸声比在B地晚2s,可知A地与爆炸点的距离比B地与爆炸点的距离远680m.因为|AB|>680m,所以爆炸点的轨迹是以A、B为焦点的双曲线在靠近B处的一支上. 例2.已知A,B两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,且声速为340m/s,求炮弹爆炸点的轨迹方程.如图所示,建立直角坐标系xOy,设爆炸点P的坐标为(x,y),则即 2a=680,a=340,因此炮弹爆炸点的轨迹方程为答:再增设一个观测点C,利用B、C(或A、C)两处测得的爆炸声的时间差,可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定爆炸点的准确位置.这是双曲线的一个重要应用.