2.1.1 合情推理 教案
1.教学目标:
(1)知识与技能:
掌握归纳推理的技巧,并能运用解决实际问题.
(2)过程与方法:
通过“自主、合作与探究”实现“一切以学生为中心”的理念.
(3)情感、态度与价值观:
感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感.
2.教学重点:
归纳推理及方法的总结.
3.教学难点:
归纳推理的含义及其具体应用.
4.教具准备:
与教材内容相关的资料.
5.教学设想:
提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力.21世纪教育网版权所有
6.教学过程:
学生探究过程:
①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”
②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?
③探究:他是怎么发现“杠杆原理”的?
从而引入两则小典故:(图片展示-阿基米德的灵感)
A:一个小孩,为何轻轻松松就能提起一大桶水?
B:修筑河堤时,奴隶们是怎样搬运巨石的?
正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”.
④思考:整个过程对你有什么启发?
⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”.
皇冠明珠
追逐先辈的足迹,接触数学皇冠上最璀璨的明珠 — “歌德巴赫猜想”.
世界近代三大数学难题之一.哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和.如6=3+3,12=5+7等等.公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和. (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和. 21教育网
这就是着名的哥德巴赫猜想.欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明.叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意.从提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 =5 + 13, . . . . 等等.有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立.但验格的数学证明尚待数学家的努力.从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”.到了20世纪20年代,才有人开始向它靠近.1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99).这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”.21cnjy.com
思考:其他偶数是否也有类似的规律?
③讨论:组织学生进行交流、探讨.
④检验:2和4可以吗?为什么不行?
⑤归纳:通过刚才的探究,由学生归纳“归纳推理”的定义及特点.
数学建构
●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).
注:归纳推理的特点;
简言之,归纳推理是由部分到整体、由特殊到一般的推理.
●归纳推理的一般步骤:
师生活动
例1 前提:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的.蛇、鳄鱼、海龟、蜥蜴都是爬行动物.
结论:所有的爬行动物都是用肺呼吸的.
例2 前提:三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,……21·cn·jy·com
结论:凸n边形的内角和是(n—2)×1800.
例3
由此我们猜想:(a,b,m均为正实数)
探究:上述结论都成立吗?
强调:归纳推理的结果不一定成立! —— “ 一切皆有可能!”
例4 已知数列{}的第1项,且(n=1,2,3,…),试归纳出这个数列的通项公式.
①探索:先让学生独立进行思考.
②活动:“千里走单骑” — 鼓励学生说出自己的解题思路.
③活动:“圆桌会议” — 鼓励其他同学给予评价,对在哪里?错在哪里?还有没有更好的方法?
教学反思: