本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
2.1
参数方程的概念
教案
一、教学目标:
1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义.
2.分析曲线的几何性质,选择适当的参数写出它的参数方程.
二、教学重点:
根据问题的条件引进适当的参数,写出参数方程,体会参数的意义.
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程.
三、教学方法:
启发诱导,探究归纳
四、教学过程
(一).参数方程的概念
1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为,与地面成角,如何来刻画铅球运动的轨迹呢?
2.分析探究理解:
(1)、斜抛运动:
(2)、抽象概括:参数方程的概念.(见课本第27页)
说明:(1)一般来说,参数的变化范围是有限制的.
(2)参数是联系变量x,y的桥梁,可以有实际意义,也可无实际意义.
(3)平抛运动:【课本P27页例题】
(4)思考交流:把引例中求出的铅球运动的轨迹
的参数方程消去参数t后,再将所得方程与原方程进行比较,体会参数方程的作用.
(二)、应用举例:
例1、(课本第28页例1)已知曲线C的参数方程是
(t为参数)(1)判断点(0,1),
(5,4)与曲线C的位置关系;(2)已知点(6,a)在曲线C上,求a的值.21世纪教育网版权所有
分析:只要把参数方程中的t消去化成关于x,y的方程问题易于解决.学生练习.
反思归纳:给定参数方程要研究问题可化为关于x,y的方程问题求解.
例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为
rad/s,试以时间t为参数,建立质点运动轨迹的参数方程.
解析:如图,运动开始时质点位于A点处,此时t=0,设动点M(x,y)对应时刻t,由图可知,得参数方程为.21教育网
反思归纳:求曲线的参数方程的一般步骤.
(三)、课堂练习:课本P28页中练习题1、2
(四)、小结:
1.本节学习的数学知识;
2、本节学习的数学方法.学生自我反思、教师引导,抓住重点知识和方法共同小结归纳、进一步深化理解.
(五)、作业:课本P28页中1、3
补充:设飞机以匀速v=150m/s作水平飞行,若在飞行高度h=588m处投弹(设投弹的初速度等于飞机的速度,且不计空气阻力).(1)求炸弹离开飞机后的轨迹方程;(2)试问飞机在离目标多远(水平距离)处投弹才能命中目标.21cnjy.com
x
y
O
v=v0
x
y
500
O
A
v=100m/s
21世纪教育网
--
中国最大型、最专业的中小学教育资源门户网站。
版权所有@21世纪教育网