《1.3
正方形》
一、选择题
1.正方形具有而菱形不一定具有的性质是( )
A.对角线互相垂直
B.对角线相等
C.对角线互相平分
D.对角相等
2.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2cm2
B.4cm2
C.6cm2
D.8cm2
3.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( )
A.1:
B.1:2
C.2:3
D.4:9
4.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是( )
A.45°
B.22.5°
C.67.5°
D.75°
5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( )
A.
B.2
C.
+1
D.2+1
6.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是( )
A.3
B.4
C.5
D.6
7.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是( )
A.7
B.8
C.7
D.7
8.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( )
A.1个
B.2个
C.3个
D.4个
9.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )
A.2对
B.3对
C.4对
D.5对
10.已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是( )
A.256
B.900
C.1024
D.4096
二、填空题
11.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .
12. ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件: ,使得 ABCD为正方形.
13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为 .
14.如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为 .
15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为 cm.
16.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为 .
17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是 .
三、解答题
18.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.
19.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.
20.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.
(1)求证:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
22.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
《1.3
正方形》
参考答案与试题解析
一、选择题
1.正方形具有而菱形不一定具有的性质是( )
A.对角线互相垂直
B.对角线相等
C.对角线互相平分
D.对角相等
【考点】正方形的性质;菱形的性质.
【分析】先回顾一下菱形和正方形的性质,知道矩形的特殊性质是正方形具有而菱形不具有的性质,根据矩形的特殊性质逐个判断即可.
【解答】解:菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角,
正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),
A、菱形和正方形的对角线都互相垂直,故本选项错误;
B、菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;
C、菱形和正方形的对角线互相平分,故本选项错误;
D、菱形和正方形的对角都相等,故本选项错误;
故选B.
【点评】本题考查了矩形的性质,正方形的性质,菱形的性质的应用,主要考查学生的理解能力和辨析能力,能熟练地运用性质进行判断是解此题的关键.
2.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2cm2
B.4cm2
C.6cm2
D.8cm2
【考点】正方形的性质;全等三角形的判定与性质.
【专题】压轴题.
【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.
【解答】解:如图,连接AP,AN,点A是正方形的对角线的交
则AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四边形AENF的面积等于△NAP的面积,
而△NAP的面积是正方形的面积的,而正方形的面积为4,
∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.
故选B.
【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
3.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( )
A.1:
B.1:2
C.2:3
D.4:9
【考点】正方形的性质.
【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.
【解答】解:设小正方形的边长为x,根据图形可得:
∵=,
∴=,
∴=,
∴S1=S正方形ABCD,
∴S1=x2,
∵=,
∴=,
∴S2=S正方形ABCD,
∴S2=x2,
∴S1:S2=x2:
x2=4:9;
故选D.
【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.
4.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是( )
A.45°
B.22.5°
C.67.5°
D.75°
【考点】正方形的性质;等腰三角形的性质.
【专题】数形结合.
【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数.
【解答】解:∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=67.5°,
∴∠ACP=∠BCP﹣∠BCA=67.5°﹣45°=22.5°.
故选B.
【点评】此题主要考查了正方形的性质,解答本题的关键是掌握正方形的对角线平分对角的性质,及等腰三角形的性质,难度一般.
5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为( )
A.
B.2
C.
+1
D.2+1
【考点】正方形的性质.
【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
【解答】解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,
∴正方形EFGH的周长=4EF=4×=2;
故选:B.
【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.
6.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是( )
A.3
B.4
C.5
D.6
【考点】正方形的性质;翻折变换(折叠问题).
【分析】根据折叠可得DH=EH,在直角△CEH中,设CH=x,则DH=EH=9﹣x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长.
【解答】解:设CH=x,则DH=EH=9﹣x,
∵BE:EC=2:1,BC=9,
∴CE=BC=3,
∴在Rt△ECH中,EH2=EC2+CH2,
即(9﹣x)2=32+x2,
解得:x=4,
即CH=4.
故选(B).
【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换.在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键.
7.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是( )
A.7
B.8
C.7
D.7
【考点】正方形的性质.
【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.
【解答】解:如图所示:
∵四边形ABCD是正方形,
∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,
∴∠BAE+∠DAG=90°,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SSS),
∴∠ABE=∠CDF,
∵∠AEB=∠CFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAG=∠CDF,
同理:∠ABE=∠DAG=∠CDF=∠BCH,
∴∠DAG+∠ADG=∠CDF+∠ADG=90°,
即∠DGA=90°,
同理:∠CHB=90°,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(AAS),
∴AE=DG,BE=AG,
同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,
∴EG=GF=FH=EF=12﹣5=7,
∵∠GEH=180°﹣90°=90°,
∴四边形EGFH是正方形,
∴EF=EG=7;
故选:C.
【点评】本题考查了正方形的判定与性质、全等三角形的判定与性质;熟练掌握正方形的判定与性质,证明三角形全等是解决问题的关键.
8.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有( )
A.1个
B.2个
C.3个
D.4个
【考点】正方形的性质;全等三角形的判定与性质.
【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;
②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;
③同②证明△EHF≌△DHC即可;
④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.
【解答】解:①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF﹣GF,DF=CD﹣FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;
③∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,,
∴△EHF≌△DHC(SAS),故③正确;
④∵=,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示:
设HM=x,则DM=5x,DH=x,CD=6x,
则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确;
故选:D.
【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
9.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )
A.2对
B.3对
C.4对
D.5对
【考点】正方形的性质;全等三角形的判定.
【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′.由此即可得出答案.
【解答】解:∵四边形ABCD是正方形,
∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,
在△ABD和△BCD中,
,
∴△ABD≌△BCD,
∵AD∥BC,
∴∠MDO=∠M′BO,
在△MOD和△M′OB中,
,
∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,
∴全等三角形一共有4对.
故选C.
【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.
10.已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是( )
A.256
B.900
C.1024
D.4096
【考点】正方形的性质.
【专题】规律型.
【分析】判断出△OA1B1是等腰直角三角形,求出第一个正方形A1B1C1A2的边长为1,再求出△B1C1B2是等腰直角三角形,再求出第2个正方形A2B2C2A3的边长为2,然后依次求出第3个正方形的边长,第4个正方形的边长第5个正方形的边长,第6个正方形的边长,再根据正方形的面积公式列式计算即可得解.
【解答】解:∵∠MON=45°,
∴△OA1B1是等腰直角三角形,
∵OA1=1,
∴正方形A1B1C1A2的边长为1,
∵B1C1∥OA2,
∴∠B2B1C1=∠MON=45°,
∴△B1C1B2是等腰直角三角形,
∴正方形A2B2C2A3的边长为:1+1=2,
同理,第3个正方形A3B3C3A4的边长为:2+2=4,
第4个正方形A4B4C4A5的边长为:4+4=8,
第5个正方形A5B5C5A6的边长为:8+8=16,
第6个正方形A6B6C6A7的边长为:16+16=32,
所以,第6个正方形的面积S6是:322=1024.
故选C.
【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,得出后一个正方形的边长等于前一个正方形的边长的2倍是解题的关键.
二、填空题
11.
如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45° .
【考点】正方形的性质.
【分析】由正方形的性质和折叠的性质即可得出结果.
【解答】解:∵四边形ABCD是正方形,
∴∠B=90°,∠ACB=45°,
由折叠的性质得:∠AEM=∠B=90°,
∴∠CEM=90°,
∴∠CME=90°﹣45°=45°;
故答案为:45°.
【点评】本题考查了正方形的性质、折叠的性质;熟练掌握正方形和折叠的性质是解决问题的关键.
12.
ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件: ∠BAD=90° ,使得 ABCD为正方形.
【考点】正方形的判定;平行四边形的性质.
【分析】根据正方形的判定定理添加条件即可.
【解答】解:∵ ABCD的对角线AC与BD相交于点O,且AC⊥BD,
∴ ABCD是菱形,
当∠BAD=90°时, ABCD为正方形.
故答案为:∠BAD=90°.
【点评】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.
13.
如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为 .
【考点】正方形的性质;直角三角形斜边上的中线;勾股定理;三角形中位线定理.
【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.
【解答】解:∵CE=5,△CEF的周长为18,
∴CF+EF=18﹣5=13.
∵F为DE的中点,
∴DF=EF.
∵∠BCD=90°,
∴CF=DE,
∴EF=CF=DE=6.5,
∴DE=2EF=13,
∴CD===12.
∵四边形ABCD是正方形,
∴BC=CD=12,O为BD的中点,
∴OF是△BDE的中位线,
∴OF=(BC﹣CE)=(12﹣5)=.
故答案为:.
【点评】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.
14.如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为 6﹣6 .
【考点】正方形的性质;等边三角形的性质.
【分析】过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.
【解答】解:如图,过点B作BH⊥AC于H,交GF于K,
∵△ABC是等边三角形,
∴∠A=∠ABC=60°,
∵BD=BE,
∴△BDE是等边三角形,
∴∠BDE=60°,
∴∠A=∠BDE,
∴AC∥DE,
∵四边形DEFG是正方形,GF=6,
∴DE∥GF,
∴AC∥DE∥GF,
∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,
∴F点到AC的距离为6﹣6.
故答案为:6﹣6.
【点评】本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.
15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为 13 cm.
【考点】正方形的性质;菱形的性质.
【分析】根据正方形的面积可用对角线进行计算解答即可.
【解答】解:因为正方形AECF的面积为50cm2,
所以AC=cm,
因为菱形ABCD的面积为120cm2,
所以BD=cm,
所以菱形的边长=cm.
故答案为:13.
【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
16.(2016 齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为 20和20 .
【考点】正方形的性质;等腰三角形的性质.
【专题】分类讨论.
【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.
【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,
作BD⊥AC于D,∵∠A=30°,
∴BD=AB=a,
∴ a a=5,
∴a2=20,
∴△ABC的腰长为边的正方形的面积为20.
如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,
∵AB=AC,
∴∠ABC=∠C=30°,
∴∠BAC=120°,∠BAD=60°,
在RT△ABD中,∵∠D=90°,∠BAD=60°,
∴BD=a,
∴ a a=5,
∴a2=20,
∴△ABC的腰长为边的正方形的面积为20.
故答案为20或20.
【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.
17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是 (21008,0) .
【考点】正方形的性质;规律型:点的坐标.
【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.
【解答】解:∵正方形OA1B1C1边长为1,
∴OB1=,
∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,
∴OB2=2,
∴B2点坐标为(0,2),
同理可知OB3=2,
∴B3点坐标为(﹣2,2),
同理可知OB4=4,B4点坐标为(﹣4,0),
B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),
B7(8,﹣8),B8(16,0)
B9(16,16),B10(0,32),
由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,
∵2016÷8=252
∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,
∴B2016的坐标为(21008,0).
故答案为:(21008,0).
【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.
三、解答题
18.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.
【考点】正方形的性质;全等三角形的判定与性质.
【专题】证明题.
【分析】先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.
【解答】证明:取AB的中点H,连接EH;
∵∠AEF=90°,
∴∠2+∠AEB=90°,
∵四边形ABCD是正方形,
∴∠1+∠AEB=90°,
∴∠1=∠2,
∵E是BC的中点,H是AB的中点,
∴BH=BE,AH=CE,
∴∠BHE=45°,
∵CF是∠DCG的角平分线,
∴∠FCG=45°,
∴∠AHE=∠ECF=135°,
在△AHE和△ECF中,
,
∴△AHE≌△ECF(ASA),
∴AE=EF.
【点评】此题考查了正方形的性质和全等三角形的判定与性质,解题的关键是取AB的中点H,得出AH=EC,再根据全等三角形的判定得出△AHE≌△ECF.
19.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.
【考点】正方形的性质;全等三角形的判定与性质.
【专题】证明题.
【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE和△DAF全等,再根据全等三角形对应边相等证明即可.
【解答】证明:∵四边形ABCD是正方形,
∴AD=CD,∠DAB=∠C=90°,
∴∠FAD=180°﹣∠DAB=90°.
在△DCE和△DAF中,
,
∴△DCE≌△DAF(SAS),
∴DE=DF.
【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用全等三角形对应边相等证明线段相等是常用的方法之一,一定要熟练掌握并灵活运用.
20.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.
(1)求证:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
【考点】正方形的性质;全等三角形的判定与性质;旋转的性质.
【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;
(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出SEGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.
【解答】(1)证明:∵EP⊥AE,
∴∠AEB+∠GEF=90°,
又∵∠AEB+∠BAE=90°,
∴∠GEF=∠BAE,
又∵FG⊥BC,
∴∠ABE=∠EGF=90°,
在△ABE与△EGF中,
,
∴△ABE≌△EGF(AAS);
(2)解:∵△ABE≌△EGF,AB=2,
∴AB=EG=2,S△ABE=S△EGF,
∵S△ABE=2S△ECF,
∴SEGF=2S△ECF,
∴EC=CG=1,
∵四边形ABCD是正方形,
∵BC=AB=2,
∴BE=2﹣1=1.
【点评】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,三角形的面积,熟练掌握判定与性质是解本题的关键.
21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
【考点】正方形的性质;全等三角形的判定与性质.
【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.
【解答】解:(1)∵正方形ABCD
∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°
∵DP⊥AQ
∴∠ADP+∠DAP=90°
∴∠BAQ=∠ADP
∵AQ⊥BE于点Q,DP⊥AQ于点P
∴∠AQB=∠DPA=90°
∴△AQB≌△DPA(AAS)
∴AP=BQ
(2)①AQ﹣AP=PQ
②AQ﹣BQ=PQ
③DP﹣AP=PQ
④DP﹣BQ=PQ
【点评】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.
22.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.
(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.
【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.
【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;
(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.
【解答】(1)证明:∵四边形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有,
∴△ABF≌△CBE(SAS).
(2)解:△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
【点评】本题考查了正方形的性质.全等三角形的判定及性质、等腰直角三角形的性质以及角的计算,解题的关键是:(1)根据判定定理SAS证明△ABF≌△CBE;(2)通过角的计算得出∠CEF=90°.本题属于中档题,难度不大,解决该题型题目时,通过正方形和等腰三角形的性质找出相等的边,再通过角的计算找出相等的角,以此来证明两三角形全等是关键.
第30页(共30页)