《4.4
角的比较》
一、填空:
1.如图,∠AOB ∠AOC,∠AOB ∠BOC(填>,=,<);用量角器度量∠BOC= ,∠AOC= ,∠AOC ∠BOC.
2.如图,∠AOC= + = ﹣ ;∠BOC= ﹣ = ﹣ .
3.OC是∠AOB内部的一条射线,若∠AOC= ,则OC平分∠AOB;若OC是∠AOB的角平分线,则 =2∠AOC.
二、选择:
4.下列说法错误的是( )
A.角的大小与角的边画出部分的长短没有关系
B.角的大小与它们的度数大小是一致的
C.角的和差倍分的度数等于它们的度数的和差倍分
D.若∠A+∠B>∠C,那么∠A一定大于∠C
5.用一副三角板不能画出( )
A.75°角
B.135°角
C.160°角
D.105°角
6.如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )
A.∠AOD>∠BOC
B.∠AOD<∠BOC
C.∠AOD=∠BOC
D.无法确定
7.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是( )
A.∠3>∠4
B.∠3=∠4
C.∠3<∠4
D.不确定
三、解答题(共6小题,满分0分)
8.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.
9.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.
10.如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=21°,求∠ABC的度数.
11.如图,已知∠α、∠β,画一个角∠γ,使∠γ=3∠β﹣∠α.
12.如图,A、B两地隔着湖水,从C地测得CA=50m,CB=60m,∠ACB=145°,用1厘米代表10米(就是1:1000的比例尺)画出如图的图形.量出AB的长(精确到1毫米),再换算出A、B间的实际距离.
13.如图,∠AOB是平角,OD、OC、OE是三条射线,OD是∠AOC的平分线,请你补充一个条件,使∠DOE=90°,并说明你的理由.
《4.4
角的比较》
参考答案与试题解析
一、填空:
1.如图,∠AOB > ∠AOC,∠AOB > ∠BOC(填>,=,<);用量角器度量∠BOC= 30° ,∠AOC= 25° ,∠AOC > ∠BOC.
【考点】角的计算.
【专题】计算题.
【分析】根据图形,射线OC在∠AOB的内部,即可判断角之间的大小关系.
【解答】解:由图知,射线OC在∠AOB的内部,所以∠AOB>∠AOC,∠AOB>∠BOC,
用量角器量得∠BOC=25°,∠AOC=30°,故∠AOC>∠BOC.
故答案为:>,>,25°,30°,>.
【点评】本题考查了角的计算,属于基础题,关键根据图象解答此题.
2.如图,∠AOC= ∠AOB + ∠BOC = ∠AOD ﹣ ∠COD ;∠BOC= ∠BOD ﹣ ∠COD = ∠AOC ﹣ ∠AOB .
【考点】角的计算.
【专题】计算题.
【分析】根据图形即可求出∠AOC及∠BOC的不同表示形式.
【解答】解:根据图形,∴∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;
∠BOC=∠BOD﹣∠COD=∠AOC﹣∠AOB.
故答案为:∠AOB+∠BOC,∠AOD﹣∠COD,∠BOD﹣∠COD,∠AOC﹣∠AOB.
【点评】本题考查了角的计算,属于基础题,关键是利用角的和差关系求解.
3.OC是∠AOB内部的一条射线,若∠AOC= ∠AOB ,则OC平分∠AOB;若OC是∠AOB的角平分线,则 ∠AOB =2∠AOC.
【考点】角平分线的定义.
【专题】计算题.
【分析】根据题意,利用角平分线的定义推理得出结论.
【解答】解:∵角平分线定义是:从一个角的顶点出发的一条射线,如果把这个角分成两个相等的角,这条射线就叫这个角的平分线,
∴满足OC平分∠AOB的条件是:∠AOC=∠AOB,
同理:若OC是∠AOB的角平分线,
则∠AOB=2∠AOC,
故答案为∠AOB、∠AOB.
【点评】本题主要考查了角平分线的定义,需要熟记,难度不大.
二、选择:
4.下列说法错误的是( )
A.角的大小与角的边画出部分的长短没有关系
B.角的大小与它们的度数大小是一致的
C.角的和差倍分的度数等于它们的度数的和差倍分
D.若∠A+∠B>∠C,那么∠A一定大于∠C
【考点】角的概念.
【分析】根据角的大小与角的开口大小有关,与角的边的长短无关,角的大小是通过角的度数来体现的,然后对各选项分析判断后利用排除法求解.
【解答】解:A、角的大小与角的边画出部分的长短没有关系,因为角的大小只与角的开口有关,故本选项正确;
B、角的大小与它们的度数大小是一致的,正确;
C、角的和差倍分的度数等于它们的度数的和差倍分,正确;
D、∠A+∠B>∠C,∠A与∠C的大小关系无法确定,故本选项错误.
故选D.
【点评】本题主要考查角的大小与角的边和角的度数的关系,角的大小只与角的开口大小或角的度数有关,与画出部分的角的边的长短无关.
5.用一副三角板不能画出( )
A.75°角
B.135°角
C.160°角
D.105°角
【考点】角的计算.
【专题】计算题.
【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.
【解答】A选项:75°的角,45°+30°=75°;
B选项:135°的角,45°+90°=135°;
C选项:160°的角,无法用三角板中角的度数拼出;
D选项:105°的角,45°+60°=105°.
故选C.
【点评】用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.
6.如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )
A.∠AOD>∠BOC
B.∠AOD<∠BOC
C.∠AOD=∠BOC
D.无法确定
【考点】角的大小比较.
【分析】根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.
【解答】解:∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,
∴∠AOC+∠COD=∠BOD+∠COD,
∴∠AOD=∠BOC,
故选C.
【点评】本题考查了角的大小比较,解题的关键是根据图得知∠COD为∠AOD与∠BOC的公共角,再解题就容易了.
7.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是( )
A.∠3>∠4
B.∠3=∠4
C.∠3<∠4
D.不确定
【考点】角的计算.
【分析】由∠1﹣∠2=∠3,可把∠1等效替换为∠2与∠3的和,进而求解.
【解答】解:∵∠1﹣∠2=∠3,∴∠1=∠2+∠3,
又∠4+∠2=∠1,即∠4+∠2=∠2+∠3,
∴∠4=∠3
故选B.
【点评】能够求解一些简单的角的运算问题.
三、解答题(共6小题,满分0分)
8.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.
【考点】角的计算;角平分线的定义.
【专题】计算题.
【分析】利用角的和差关系计算,注意此题要分两种情况.
【解答】解:①如图1所示,OC在∠AOB内部,
∵∠AOB=90°,∠AOB=2∠BOC,
∴∠BOC=×90°=45°,
∴∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°;
②如图2所示,OC在∠AOB外部,
∵∠AOB=90°,∠AOB=2∠BOC,
∴∠BOC=×90°=45°,
又∵∠AOC=∠AOB+∠BOC,
∴∠AOC=90°+45°=135°.
【点评】要根据射线OC的位置不同,分类讨论,分别求出∠AOC的度数.
9.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.
【考点】旋转的性质.
【分析】可根据旋转前后,图形的大小形状不变,旋转角相等的性质,寻找相等角.
【解答】解:①∠AOB=∠A′OB′.
因∠A′OB′是由∠AOB旋转得到的.
②∠AOA′=∠BOB′.
∵∠AOB=∠A′OB′,
∴∠AOB﹣∠A′OB=∠A′OB′﹣∠A′OB,
∴∠AOA′=∠BOB′.
【点评】本题考查了旋转的两个性质:①旋转的不变性,旋转不改变图形的大小形状;②对应点与旋转中心的连线之间的夹角(旋转角)相等.
10.如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=21°,求∠ABC的度数.
【考点】角的计算.
【专题】计算题.
【分析】由角平分线的定义,则∠CBD=∠DBA,根据BE分∠ABC分2:5两部分这一关系列出方程求解.
【解答】解:设∠ABE=2x°,
得2x+21=5x﹣21,
解得x=14,
∴∠ABC=14°×7=98°.
∴∠ABC的度数是98°.
故答案为98°.
【点评】解题的关键要正确设出∠ABE=2x°,根据BE分∠ABC分2:5两部分,∠ABE:∠CBE=2:5,列出方程.
11.如图,已知∠α、∠β,画一个角∠γ,使∠γ=3∠β﹣∠α.
【考点】角的计算.
【专题】作图题.
【分析】要作一角等于3∠β﹣∠α,就须先以O为顶点,以OA为一边作∠AOD=3∠β,然后在∠AOD的内部以∠AOD的一边为边作一个角等于∠α即可.
【解答】解:(1)以∠β的顶点O为圆心,以适当的长为半径画弧,分别交射线OA、OB于点E、F
(2)在弧上依次截取,并使.
(3)自O点过H点作射线OD,则∠AOD即为3∠β.
(4)在∠α内作一个角等于∠α.
(5)在∠AOD内以OA为一边截取∠α,得∠COD即为所求.
所作图形如下所示:
【点评】本题考查了角的作图,属于基础题,关键根据已知角作图.
12.如图,A、B两地隔着湖水,从C地测得CA=50m,CB=60m,∠ACB=145°,用1厘米代表10米(就是1:1000的比例尺)画出如图的图形.量出AB的长(精确到1毫米),再换算出A、B间的实际距离.
【考点】比例线段.
【专题】计算题.
【分析】根据比例尺的定义,1厘米代表10米,把CA=50m,CB=60m,转化为CA=5cm,CB=6cm,结合题意画图,再测量AB的长,最后换算出A、B间的实际距离.
【解答】解:如图,测得AB长约10.5cm,换算成实际距离约为10.5×1000=10500cm=105m.
即A、B间的实际距离是105m.
【点评】本题考查了比例问题以及两点之间的距离是连接两点的线段的长度.
13.如图,∠AOB是平角,OD、OC、OE是三条射线,OD是∠AOC的平分线,请你补充一个条件,使∠DOE=90°,并说明你的理由.
【考点】角平分线的定义.
【专题】开放型.
【分析】本题比较多的条件是平分线,∠DOE是平角∠AOB的一半.从而可以求解.
【解答】解:OE平分∠BOC或∠AOD+∠EOB=90°.
∵∠AOC+∠BOC=180°,OE平分∠BOC,OD是∠AOC的平分线,
∴2∠DOC+2∠EOC=180°,
∴∠DOE=90°.
【点评】对题目中的已知条件进行分析,分析时应分两步完成,一步是从已知条件出发,看能得到什么结论,题目中满足哪些定义、定理、基本图形;第二步是从结论出发,探求问题成立的条件,或要解决本题的途径.结合第一步的分析,总结出合适的解决方法.
第10页(共12页)