第三章 函数的应用
一、函数的零点
1.函数零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.
2.几个等价关系:方程f(x)=0有实数根 函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点.
3.函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a) f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
例1函数f(x)=的零点个数为( ).
A.3
B.2
C.7
D.0
答案:B
审题视点:
函数零点的个数 f(x)=0解的个数 函数图象与x轴交点的个数.
解析:法一 由f(x)=0得
或解得x=-3或x=e2.因此函数f(x)共有两个零点.
法二 函数f(x)的图象如图所示
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\L92.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\L92.TIF"
\
MERGEFORMATINET
可观察函数f(x)共有两个零点.
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\方法总结A.tif"
\
MERGEFORMATINET
函数零点个数的判断方法:
(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.
(2)零点存在性定理:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a) f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.例:求函数f(x)=log2x+x的零点个数,即求函数f(x)=log2x与f(x)=-x的交点个数。
训练1函数f(x)=log3x+x-3的零点一定在区间( ).
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
答案:C
解析:法一 函数f(x)=log3x+x-3的定义域为(0,+∞),并且在(0,+∞)上递增连续,
又f(2)=log32-1<0,f(3)=1>0,∴函数f(x)=log3x+x-3有唯一的零点且零点在区间(2,3)内.
法二 方程log3x+x-3=0可化为log3x=3-x,在同一坐标系中作出y=log3x和y=3-x的图象如图所示,可观察判断出两图象交点横坐标在区间(2,3)内.
训练2
已知f(x)=(x+1) |x-1|,若关于x的方程f(x)=x+m有三个不同的实数解,则实数m的取值范围
.
答案:-1<m<.
解:由f(x)=(x+1)|x-1|=
得函数y=f(x)的图象(如图).
按题意,直线y=x+m与曲线y=(x+1)|x-1|有三个不同的公共点,求直线y=x+m在y轴上的截距m的取值范围.
4.二次函数y=ax2+bx+c(a>0)零点的分布
根的分布(m<n<p为常数)
图象
满足条件
x1<x2<m
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\l85.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\l85.TIF"
\
MERGEFORMATINET
m<x1<x2
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\l86.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\l86.TIF"
\
MERGEFORMATINET
x1<m<x2
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\l87.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\l87.TIF"
\
MERGEFORMATINET
f(m)<0
m<x1<x2<n
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\l88.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\l88.TIF"
\
MERGEFORMATINET
n<x2<p
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\l89.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\l89.TIF"
\
MERGEFORMATINET
只有一根在(m,n)之间
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\l90.TIF"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\l90.TIF"
\
MERGEFORMATINET
或f(m) f(n)
<0
例1是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个零点,且只有一个零点.若存在,求出a的取值范围,若不存在,说明理由.
审题视点:可用零点定理去判断,注意对函数端点值的检验.
解:∵Δ=(3a-2)2-4(a-1)=9a2-16a+8=+>0
∴若实数a满足条件,则只需f(-1) f(3)≤0即可.
f(-1) f(3)=(1-3a+2+a-1) (9+9a-6+a-1)=4(1-a)(5a+1)≤0.
所以a≤-或a≥1.
检验:(1)当f(-1)=0时,a=1.所以f(x)=x2+x.令f(x)=0,即x2+x=0,得x=0或x=-1.
方程在[-1,3]上有两根,不合题意,故a≠1.
(2)当f(3)=0时,a=-,此时f(x)=x2-x-.令f(x)=0,即x2-x-=0,解之得
x=-或x=3.
方程在[-1,3]上有两根,不合题意,故a≠-.
综上所述,a<-或a>1.
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\方法总结A.tif"
\
MERGEFORMATINET
解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.
训练1
方程的两根都大于1,则实数的取值范围是(
).
A.
B.
C.或 D.
错解:由韦达定理得
,选B
反例:若,满足但不能约束
正确解法:由题意
,∴选A
训练2
关于x的一元二次方程x2-2ax+a+2=0,当a为何实数时:
(1)有两不同正根;
(2)不同两根在(1,3)之间;
(3)有一根大于2,另一根小于2;
(4)在(1,3)内有且只有一解.
解:设f(x)=x2-2ax+a+2,
Δ=4a2-4(a+2)=4(a2-a-2)=4(a-2)(a+1).
(1)由已知条件解得a>2.
(2)由已知条件解得2<a<.
(3)由已知条件f(2)<0,解得a>2.
(4)由已知条件f(1)f(3)<0,解得<a<3.
检验:当f(3)=0,a=时,方程的两解为x=,x=3,
当f(1)=0,即a=3时,方程的两解为x=1,x=5,可知≤a<3.
当 a=2.即a=2时f(x)=x2-4x+4=(x-2)2方程的解x1=x2=2.
∴a=2,综上有a=2或≤a<3.
二、二分法求方程的近似解
1.二分法的定义
对于在区间[a,b]上连续不断且f(a) f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:
①确定区间[a,b],验证f(a) f(b)<0,给定精确度ε;
②求区间(a,b)的中点c;
③计算f(c);
(ⅰ)若f(c)=0,则c就是函数的零点;
(ⅱ)若f(a) f(c)<0,则令b=c(此时零点x0∈(a,c));
(ⅲ)若f(c) f(b)<0,则令a=c(此时零点x0∈(c,b)).
④判断是否达到精确度ε.即:若|a-b|<ε,则得到零点近似值a(或b);否则重复②③④.
例1下列函数中能用二分法求零点的是( ).
答案:C
解析:能用二分法求函数零点的函数,在零点的左右两侧的函数值符号相反,由图象可得,只有C能满足此条件.故选C.
训练1用二分法求函数f(x)=lgx+x﹣3的一个零点,根据参考数据,可得函数f(x)的一个零点的近似解(精确到0.1)为( ).(参考数据:lg2.5≈0.398,lg2.75≈0.439,lg2.5625≈0.409)
A.2.4
B.2.5
C.2.6
D.2.56
答案:C
解:由题意可知:f(2.5)=lg2.5+2.5﹣3=0.398﹣0.5<0,f(2.5625)=lg2.5625+2.5625﹣3=0.409﹣0.4375<0,
f
(2.75)=lg2.75+2.75﹣3=0.439﹣0.25>0,又因为函数在(0,+∞)上连续,所以函数在区间(2.5625,2.75)上有零点.故选C.
三、常见的函数模型及性质
1.几类函数模型
①一次函数模型:y=kx+b(k≠0).
②二次函数模型:y=ax2+bx+c(a≠0).
③指数函数型模型:y=abx+c(b>0,b≠1).
④对数函数型模型:y=mlogax+n(a>0,a≠1).
⑤幂函数型模型:y=axn+b.
2.三种函数模型的性质
函数性质
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞)上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化而各有不同
值的比较
存在一个x0,当x>x0时,有logax<xn<ax
例1
三个变量y1,y2,y3随着变量x的变化情况如下表:
x
1
3
5
7
9
11
y1
5
135
625
1715
3645
6655
y2
5
29
245
2189
19685
177149
y3
5
6.10
6.61
6.985
7.2
7.4
则关于x分别呈对数函数、指数函数、幂函数变化的变量依次为
( ).
A.y1,y2,y3
B.y2,y1,y3
C.y3,y2,y1
D.y1,y3,y2
答案:C
解:通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数函数的增长速度越来越快,y2随x的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y1随x的变化符合此规律,故选C.
例2在经济学中,函数f(x)的边际函数Mf(x)定义为:Mf(x)=f(x+1)-f(x).某公司每月生产x台某种产品的收入为R(x)元,成本为C(x)元,且R(x)=3
000x-20x2,C(x)=500x+4
000(x∈N
).现已知该公司每月生产该产品不超过100台.
(1)求利润函数P(x)以及它的边际利润函数MP(x);
(2)求利润函数的最大值与边际利润函数的最大值之差.
解:(1)由题意,得x∈[1,100],且x∈N
.
P(x)=R(x)-C(x)=(3
000x-20x2)-(500x+4
000)=-20x2+2
500x-4
000,
MP(x)=P(x+1)-P(x)=[-20(x+1)2+2
500(x+1)-4
000]-(-20x2+2
500x-4
000)
=2
480-40x.
(2)P(x)=+74
125,
当x=62或x=63时,P(x)取得最大值74
120元;
因为MP(x)=2
480-40x是减函数,所以当x=1时,MP(x)取得最大值2
440元.
故利润函数的最大值与边际利润函数的最大值之差为71
680元.
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsx03\\Desktop\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"C:\\Users\\szsw05\\Desktop\\20205\\方法总结A.tif"
\
MERGEFORMATINET
INCLUDEPICTURE
"E:\\有用文件\\工作相关资料\\期末考试策划\\数学已完成\\20205\\方法总结A.tif"
\
MERGEFORMATINET
二次函数是我们比较熟悉的基本函数,建立二次函数模型可以求出函数的最值,解决实际中的最优化问题,值得注意的是:一定要注意自变量的取值范围,根据图象的对称轴与定义域在数轴上表示的区间之间的位置关系讨论求解.
训练1经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.
解:(1)根据题意,得
S==
(2)①当1≤t≤30,t∈N时,S=-(t-20)2+6
400,
∴当t=20时,S的最大值为6
400;
②当31≤t≤50,t∈N时,S=-90t+9
000为减函数,
∴当t=31时,S的最大值为6
210.
∵6
210<6
400,∴当t=20时,日销售额S有最大值6
400.
例3某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.
(1)写出第一次服药后y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,
治疗有效.求服药一次后治疗有效的时间是多长?
审题视点:根据图象用待定系数法求出函数解析式,再分段求出时间.
解:(1)设y=,当t=1时,由y=4得k=4,由=4得a=3.
则y=.
(2)由y≥0.25得或,解得≤t≤5,
因此服药一次后治疗有效的时间是5-=小时.
本章整合:
x2-1,x≥1
1-x2,x<1
函
数
的
应
用
函数与方程
函数模型及其应用
方程的根与函数零点的关系
用二分法求方程的近似解
几种不同增长的函数模型
用已知函数模型解决问题
建立实际问题的函数模型
函数零点的存在性
直线上升
指数爆炸
对数增长
指数函数,对数函数,幂函数增长速度的比较.