1.1
二次函数
【知识与技能】
1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.
【过程与方法】
经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.
【情感态度】
体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.
【教学重点】
二次函数的概念.
【教学难点】
在实际问题中,会写简单变量之间的二次函数关系式教学过程.
一、情境导入,初步认识
1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(02.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢 有.
二、思考探究,获取新知
二次函数的概念及一般形式
在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.
三、典例精析,掌握新知
例1
指出下列函数中哪些是二次函数.
(1)y=(x-3)2-x2
;(2)y=2x(x-1);(3)y=32x-1;(4)y=;(5)y=5-x2+x.
【分析】先化为一般形式,右边为整式,依照定义分析.
解:(2)(5)是二次函数,其余不是.
【教学说明】判定一个函数是否为二次函数的思路:
1.将函数化为一般形式.
2.自变量的最高次数是2次.
3.若二次项系数中有字母,二次项系数不能为0.
例2
讲解教材P3例题.
【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.
例3
已知函数y=(m2-m)x2+mx+(m+1)(m是常数),当m为何值时:
(1)函数是一次函数;
(2)函数是二次函数.
【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.
解:(1)由
得
,
∴m=1.即当m=1时,函数y=(m2-m)x2+mx+(m+1)是一次函数.
(2)由m2-m≠0得m≠0且m≠1,
∴当m≠0且m≠1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.
【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.
四、运用新知,深化理解
1.下列函数中是二次函数的是(
)
A.
B.y=3x3+2x2
C.y=(x-2)2-x3
D.
2.二次函数y=2x(x-1)的一次项系数是(
)
A.1
B.-1
C.2
D.-2
3.若函数
是二次函数,则k的值为(
)
A.0
B.0或3
C.3
D.不确定
4.若y=(a+2)x2-3x+2是二次函数,则a的取值范围是
.
5.已知二次函数y=1-3x+5x2,则二次项系数a=
,一次项系数b=
,常数项c=
.
6.某校九(1)班共有x名学生,在毕业典礼上每两名同学都握一次手,共握手y次,试写出y与x之间的函数关系式
,它
(填“是”或“不是”)二次函数.
7.如图,在边长为5的正方形中,挖去一个半径为x的圆(圆心与正方形的中心重合),剩余部分的面积为y.
(1)求y关于x的函数关系式;
(2)试求自变量x的取值范围;
(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).
【答案】1.D
2.D
3.A
4.a≠-2
5.5,-3,1
6.
是
7.(1)y=25-πx2=-πx2+25.
(2)0<x≤52.
(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.
即剩余部分的面积约为12.4.
【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.
五、师生互动,课堂小结
1.师生共同回顾二次函数的有关概念.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问 与同伴交流.
【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.
1.教材P4第1~3题.
2.完成同步练习册中本课时的练习.
本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.