湘教版版七年级下册数学1.3.2二元一次方程组的应用同步练习
一、选择题(本大题共8小题)
1. 若x、y满足方程组,则x﹣y的值等于( )
A. ﹣1 B. 1 C. 2 D. 3
2. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )
A. B. C. D.
3. 足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是( )
A.1或2 B.2或3 C.3或4 D.4或5
4. 某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )
A.9天 B.11天 C.13天 D.22天
5. 若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?( )
A. B. C.7 D.13
6. 我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B.
C. D.
7. 为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是( )
A. B.
C. D.
8. 宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为( )
A.4 B.5 C.6 D.7
二、填空题(本大题共6小题)
9. 某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组: .
10.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.
11. 美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有 幅.
12. 为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有 种.
13. 水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为 m.
14. 某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为 .
三、计算题(本大题共4小题)
15. 某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?
(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?
16. 某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8,6,5个店铺,且每组至少有两人,则学生分组方案有多少种?
17.为鼓励居民节约用水,某市决定对居民用水实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费,小兰家的4、5月份的用水量及收费情况如下表:
月份
用水量(吨)
水费(元)
4
22
51
5
20
45
(1)求该市每吨水的基本价和市场价;
(2)小兰家6月份的用水量为26吨,则她家要交水费多少元?
18.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
参考答案:
一、选择题(本大题共8小题)
1. A
分析:方程组两方程相减即可求出x﹣y的值.
解:,
②﹣①得:2x﹣2y=﹣2,
则x﹣y=﹣1,故选A
2. D
分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.
解:设男生有x人,女生有y人,根据题意得,
.故选:D.
3.C
分析:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.
解:设该队胜x场,平y场,则负(6﹣x﹣y)场,
根据题意,得:3x+y=12,即:x=,
∵x、y均为非负整数,且x+y≤6,
∴当y=0时,x=4;当y=3时,x=3;
即该队获胜的场数可能是3场或4场,故选:C.
4.B
分析:根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组解出即可.
解:设有x天早晨下雨,这一段时间有y天,
根据题意得:
①+②得:2y=22
y=11
所以一共有11天,故选B.
5. D
分析:将其中一个方程两边乘以一个数,使其与另一方程中x的系数互为相反数,再将两方程相加,消去一个未知数,达到降元的目的,求出另一个未知数,再用代入法求另一个未知数.
解:
①×2﹣②得,7x=7,
x=1,代入①中得,2+y=14,
解得y=12,
则a+b=1+12=13,故选D.
6.C
分析:设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.
解:设有x匹大马,y匹小马,根据题意得
,故选C
7. D
分析:根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.
解:该班男生有x人,女生有y人.根据题意得:,
故选:D.
8. B
分析:设生产甲产品x件,则乙产品(20﹣x)件,根据生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,列出不等式组,求出不等式组的解,再根据x为整数,得出有5种生产方案.
解:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:
,
解得:8≤x≤12,
∵x为整数,
∴x=8,9,10,11,12,
∴有5种生产方案:
方案1,A产品8件,B产品12件;
方案2,A产品9件,B产品11件;
方案3,A产品10件,B产品10件;
方案4,A产品11件,B产品9件;
方案5,A产品12件,B产品8件;故选B.
二、填空题(本大题共6小题)
9.分析:根据题意可找到等量关系:甲种票数量+乙种票数量=40,甲种票总费用+乙种票总费用=370。
解:列二元一次方程组
10.分析:设购买甲电影票x张,乙电影票y张,则根据总共买票40张,花了700元可得出方程组,解出即可得出答案.
解:设购买甲电影票x张,乙电影票y张,由题意得,
x+y=40
20x+15y=700 ,
解得: x=20 y=20 ,即甲电影票买了20张.
故答案为:20.
11. 分析: 设展出的油画作品的数量是x幅,展出的国画作品是y幅,则根据“展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅”列出方程组并解答.
解:设展出的油画作品的数量是x幅,展出的国画作品是y幅,依题意得
,解得,故答案是:69.
12.分析: 设毽子能买x个,跳绳能买y根,依据“某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元”列出方程,并解答.
解:设毽子能买x个,跳绳能买y根,根据题意可得:
3x+5y=35,y=7﹣x,
∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;
∴购买方案有2种.
13.
分析:设小长方形的长为xm,宽为ym,由图可知,长方形展厅的长是(2x+y)m,宽为(x+2y)m,由此列出方程组求得长、宽,进一步解决问题.
解:设小长方形的长为xm,宽为ym,由图可得
解得x+y=8,
∴每个小长方形的周长为8×2=16m.
故答案为:16.
14.分析:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,就有4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.
解:设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,由题意,得
,
解得:.
∴x+y=20.
故答案为:20.
三、计算题(本大题共4小题)
15. (1)设年降水量为x万立方米,每人年平均用水量为y立方米,则:
解得
答:年降水量为200万立方米,每人年平均用水量为50立方米.
(2)设该城镇居民年平均用水量为z立方米才能实现目标,则:
12000+25×200=20×25z,解得z=34.
所以50-34=16.
答:该城镇居民人均每年需要节约16立方米的水才能实现目标.
16. 设第一小组有x人,第二小组有y人,则第三小组有(20-x-y)人,则8x+6y+5(20-x-y)=120,3x+y=20,当x=2时,y=14,20-x-y=4,符合题意;当x=3时,y=11,20-x-y=6,符合题意;当x=4时,y=8,20-x-y=8,符合题意;当x=5时,y=5,20-x-y=10,符合题意;当x=6时,y=2,20-x-y=12,符合题意,故学生分组方案有5种.
17.解:(1)设该市水的基本价为x元/吨,市场价为y元/吨.由题意可得
解得
答:该市水的基本价为2元/吨,市场价为3元/吨.
(2)当用水量为26吨时,总水费=3×(26-15)+15×2=63(元).
答:小兰家6月份要缴水费63元.
18.解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨、y吨,根据题意,得
解得
答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.
(2)根据题意可得3a+4b=31,b=,使a,b都为整数的情况共有a=1,b=7或a=5,b=4或a=9,b=1三种,故租车方案分别为:
①A型车1辆,B型车7辆;
②A型车5辆,B型车4辆;
③A型车9辆,B型车1辆.
(3)方案①花费为100×1+120×7=940(元);
方案②花费为100×5+120×4=980(元);
方案③花费为100×9+120×1=1 020(元).
答:方案①最省钱,即租用A型车1辆,B型车7辆,最少租车费为940元.