中考数学压轴题解法探究(6)—图形运动中的计算说理问题

文档属性

名称 中考数学压轴题解法探究(6)—图形运动中的计算说理问题
格式 zip
文件大小 570.9KB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2017-02-28 17:17:59

图片预览

文档简介

中考数学压轴题解法探究
图形运动中的计算说理问题
【专题解析】
考题研究:
从近几年的中考试题来分析,简单的论证与单独的计算已经开始从考题中离去,推理与计算的融合已经成为了近期的考题重点,这种问题主要从计算能力和推理能力进行综合考查,也成为了考题中的压轴之题,从而进行专题压轴训练也是非常重要的。21·cn·jy·com
解题攻略:
计算说理是通过计算得到结论;说理计算侧重说理,说理之后进行代入求值.
压轴题中的代数计算题,主要是函数类题.
函数计算题必考的是待定系数法求函数的解析式,按照设、列、解、验、答五步完成,一般来说,解析式中待定几个字母,就要代入几个点的坐标.2·1·c·n·j·y
还有一类计算题,就是从特殊到一般,通过计算寻找规律.
代数计算和说理较多的一类题目,是确定直线与抛物线的交点个数.联立直线和抛物线的解析式组成方程组,消去y,得到关于x的一元二次方程,然后根据?确定交点的个数.【来源:21·世纪·教育·网】
解题思路:
我们介绍一下求函数图像交点坐标的几何方法.
如图1,已知直线y=x+1与x轴交于点A,抛物线y=x2-2x-3与直线y=x+1交于A、B两点,求点B的坐标的代数方法,就是联立方程组,方程组的一个解是点A的坐标,另一个解计算点的坐标.
几何法是这样的:设直线AB与y轴分别交于C,那么tan∠AOC=1.
作BE⊥x轴于E,那么.设B(x, x2-2x-3),于是.
请注意,这个分式的分子因式分解后,.这个分式能不能约分,为什么?
因为x=-1的几何意义是点A,由于点B与点A不重合,所以x≠-1,因此约分以后就是x-3=1.
这样的题目一般都是这样,已知一个交点求另一个交点,经过约分,直接化为一元一次方程,很简便.
【真题精讲】
类型一:代数函数类计算综合题
典例1:(2016·辽宁丹东·10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
【解析】二次函数的应用.(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.www-2-1-cnjy-com
(2)列出方程解方程组,再根据实际意义确定x的值.
(3)构建二次函数,利用二次函数性质解决问题.
【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),
得,
解得,
∴该函数的表达式为y=﹣0.5x+80,
(2)根据题意,得,
(﹣0.5x+80)(80+x)=6750,
解得,x1=10,x2=70
∵投入成本最低.
∴x2=70不满足题意,舍去.
∴增种果树10棵时,果园可以收获果实6750千克.
(3)根据题意,得
w=(﹣0.5x+80)(80+x)
=﹣0.5 x2+40 x+6400
=﹣0.5(x﹣40)2+7200
∵a=﹣0.5<0,则抛物线开口向下,函数有最大值
∴当x=40时,w最大值为7200千克.
∴当增种果树40棵时果园的最大产量是7200千克.
变式训练1:
(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.【来源:21cnj*y.co*m】
类型二:探究归纳规律类计算综合题
典例2:(2016·山东省菏泽市·3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=   .【出处:21教育名师】
【考点】二次函数图象与几何变换;抛物线与x轴的交点.
【专题】规律型.
【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.
【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),
∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),
∴顶点坐标为(1,1),
∴A1坐标为(2,0)
∵C2由C1旋转得到,
∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);
照此类推可得,C3顶点坐标为(5,1),A3(6,0);
C4顶点坐标为(7,﹣1),A4(8,0);
C5顶点坐标为(9,1),A5(10,0);
C6顶点坐标为(11,﹣1),A6(12,0);
∴m=﹣1.
故答案为:﹣1.
【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.
变式训练2:
(2016·四川内江)一组正方形按如图3所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形的边长是( )
A.()2015 B.()2016 C.()2016 D.()2015
类型三:代数与几何计算类综合问题
典例3(2016·四川内江)(12分)如图15,已知抛物线C:y=x2-3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.
(1)求m的值;
(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=-3x+b交于点P,且+=,求b的值;
(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否存在实数k使S△APQ=S△BPQ,若存在,求k的值;若不存在,说明理由.
【解析】二次函数与一元二次方程的关系,三角形的相似,推理论证的能力。
【解答】解:(1)∵当k=1时,抛物线C与直线l只有一个公共点
∴方程组有且只有一组解.
消去y,得x2-4x+m=0,所以此一元二次方程有两个相等的实数根.
∴△=0,即(-4)2-4m=0.
∴m=4.
(2)如图,分别过点A,P,B作y轴的垂线,垂足依次为C,D,E,
则△OAC∽△OPD,∴=.
同理,=.
∵+=,∴+=2.
∴+=2.
∴+=,即=.
解方程组得x=,即PD=.
由方程组消去y,得x2-(k+3)x+4=0.
∵AC,BE是以上一元二次方程的两根,
∴AC+BE=k+3,AC·BE=4.
∴=.
解得b=8.
(3)不存在.理由如下:
假设存在,则当S△APQ=S△BPQ时有AP=PB,
于是PD-AC=PE-PD,即AC+BE=2PD.
由(2)可知AC+BE=k+3,PD=,
∴k+3=2×,即(k+3)2=16.
解得k=1(舍去k=-7).
当k=1时,A,B两点重合,△QAB不存在.
∴不存在实数k使S△APQ=S△BPQ.
变式训练3:
(2016·青海西宁·12分)如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.
(1)求过A,B,E三点的抛物线的解析式;
(2)求证:四边形AMCD是菱形;
(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.
【过关检测】
1. (2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为   .
2. (2015年山东泰安,第29题)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
3. (2015福建龙岩25,14分)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.
(1)写出点D的坐标并求出抛物线的解析式;
(2)证明∠ACO=∠OBC;
(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.
4. (2016·内蒙古包头)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.
(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?21*cnjy*com
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【参考答案】
变式训练参考答案:
变式训练1:
(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
【解析】二次函数的应用;一元一次不等式组的应用.(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;
(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.
【解答】解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,
由题意得,,
解不等式①得,x≥11,
解不等式②得,x≤15,
所以,不等式组的解集是11≤x≤15,
∵x为正整数,
∴x可取的值为11、12、13、14、15,
所以,该商家共有5种进货方案;
(2)设总利润为W元,
y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,
则W=(1760﹣y1)x1+(1700﹣y2)x2,
=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),
=1760x+20x2﹣1500x+10x2﹣800x+12000,
=30x2﹣540x+12000,
=30(x﹣9)2+9570,
当x>9时,W随x的增大而增大,
∵11≤x≤15,
∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),
答:采购空调15台时,获得总利润最大,最大利润值为10650元.
【点评】本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.【版权所有:21教育】
变式训练2:
(2016·四川内江)一组正方形按如图3所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形的边长是( )
A.()2015 B.()2016 C.()2016 D.()2015
[考点]三角形的相似,推理、猜想。
[解析]易知△B2C2E2∽△C1D1E1,∴===30°.
∴B2C2=C1D1·30°=.∴C2D2=.
同理,B3C3=C2D2·30°=()2;
由此猜想BnCn=()n-1.
当n=2016时,=()2015.
故选D.
变式训练3:
(2016·青海西宁·12分)如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.
(1)求过A,B,E三点的抛物线的解析式;
(2)求证:四边形AMCD是菱形;
(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.
【解析】二次函数综合题.(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;
(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;
(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.
【解答】(1)解:由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,
则MA=MB=MC=ME=2,
又∵CO⊥MB,
∴MO=BO=1,
∴A(﹣3,0),B(1,0),E(﹣1,﹣2),
抛物线顶点E的坐标为(﹣1,﹣2),
设函数解析式为y=a(x+1)2﹣2(a≠0)
把点B(1,0)代入y=a(x+1)2﹣2,
解得:a=,
故二次函数解析式为:y=(x+1)2﹣2;
(2)证明:连接DM,
∵△MBC为等边三角形,
∴∠CMB=60°,
∴∠AMC=120°,
∵点D平分弧AC,
∴∠AMD=∠CMD=∠AMC=60°,
∵MD=MC=MA,
∴△MCD,△MDA是等边三角形,
∴DC=CM=MA=AD,
∴四边形AMCD为菱形(四条边都相等的四边形是菱形);
(3)解:存在.
理由如下:
设点P的坐标为(m,n)
∵S△ABP=AB|n|,AB=4
∴×4×|n|=5,
即2|n|=5,
解得:n=±,
当时,(m+1)2﹣2=,
解此方程得:m1=2,m2=﹣4
即点P的坐标为(2,),(﹣4,),
当n=﹣时,(m+1)2﹣2=﹣,
此方程无解,
故所求点P坐标为(2,),(﹣4,).
过关检测参考答案:
1. (2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 (﹣,) .www.21-cn-jy.com
【解析】位似变换;坐标与图形性质;矩形的性质.根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得Bn的坐标,然后根据矩形的性质即可求得对角线交点的坐标.2-1-c-n-j-y
【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,
∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,
∵OA=2,OC=1.
∵点B的坐标为(﹣2,1),
∴点B1的坐标为(﹣2×,1×),
∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,
∴B2(﹣2××,1××),
∴Bn(﹣2×,1×),
∵矩形AnOCnBn的对角线交点(﹣2××,1××),即(﹣,),
故答案为:(﹣,).
2. (2015年山东泰安,第29题)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
【解析】(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;
(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;
(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.
【解答】(1)由题设可知A(0,1),B(﹣3,),
根据题意得:,解得:,
则二次函数的解析式是:y=﹣﹣x+1;
(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).
∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,
则当x=﹣时,MN的最大值为;
(3)连接MN、BN、BM与NC互相垂直平分,
即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,
即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,
故当N(﹣1,4)时,MN和NC互相垂直平分.
【点评】本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用二次函数的性质可以解决实际问题中求最大值或最小值问题.21cnjy.com
3. (2015福建龙岩25,14分)如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.
(1)写出点D的坐标并求出抛物线的解析式;
(2)证明∠ACO=∠OBC;
(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.
【解析】二次函数综合题.(1)根据切线的性质得到点D的纵坐标是4,所以由反比例函数图象上点的坐标特征可以求得点D的坐标;过点D作DE⊥x轴,垂足为E,连接AD,BD,易得出A,B的坐标,即可求出抛物线的解析式;21·世纪*教育网
(2)连接AC,tan∠ACO==,tan∠CBO==,即可得出∠ACO=∠CBO.
(3)分别过点Q,P作QF⊥x轴,PG⊥x轴,垂足分别为F,G,设P(t,t2﹣t+4),分三种情况①AQ:AP=1:4,②AQ:AP=2:4,③AQ:AP=3:4,分别求解即可.21教育名师原创作品
【解答】解:(1)∵以D为圆心的⊙D与y轴相切于点C(0,4),
∴点D的纵坐标是4,
又∵点D在双曲线y=(x>0)的图象上,
∴4=,
解得x=5,
故点D的坐标是(5,4).
如图1,过点D作DE⊥x轴,垂足为E,连接AD,BD,
在RT△DAE中,DA=5,DE=4,
∴AE==3,
∴OA=OE﹣AE=2,OB=OA+2AE=8,
∴A(2,0),B(8,0),
设抛物线的解析式为y=a(x﹣2)(x﹣8),由于它过点C(0,4),
∴a(0﹣2)(0﹣8)=4,解得a=,
∴抛物线的解析式为y=x2﹣x+4.
(2)如图2,连接AC,
在RT△AOC中,OA=2,CO=4,
∴tan∠ACO==,
在RT△BOC中,OB=8,CO=4,
∴tan∠CBO==,
∴∠ACO=∠CBO.
(3)∵B(8,0),C(0,4),
∴直线BC的解析式为y=﹣x+4,
如图3,分别过点Q,P作QF⊥x轴,PG⊥x轴,垂足分别为F,G,
设P(t,t2﹣t+4),
①AQ:AP=1:4,则易得Q(,),
∵点Q在直线y=﹣x+4上,
∴﹣+4=,整理得t2﹣8t﹣36=0,
解得t1=4+2,t2=4﹣2,
∴P1(4+2,11﹣),P2(4﹣2,11+),
②AQ:AP=2:4,则易得Q(,),
∵点Q在直线y=﹣x+4上,
∴﹣?+4=,
整理得t2﹣8t﹣12=0,解得P3=4+2,P4=4﹣2,
∴P3(4+2,5﹣),P4(4﹣2,5+);
③AQ:AP=3:4,则易得Q(,),
∵点Q在直线y=﹣x+4上,
∴﹣?+4=,整理得t2﹣8t﹣4=0,解得t5=4+2,t6=4﹣2,
∴P5(4+2,3﹣),P6(4﹣2,3+),
综上所述,抛物线上存在六个点P,使Q为线段AP的三等分点,其坐标分别为P1(4+2,11﹣),P2(4﹣2,11+),P3(4+2,5﹣),P4(4﹣2,5+);P5(4+2,3﹣),P6(4﹣2,3+).
【点评】本题主要考查了二次函数的综合题,涉及双曲线,一次函数,三角函数及二次函数的知识,解题的关键是分三种情况讨论求解.21世纪教育网版权所有
4. (2016·内蒙古包头)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.21教育网
(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?21*cnjy*com
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【解析】二次函数综合题.(1)用待定系数法求出抛物线解析式;
(2)先求出GH,点F的坐标,用三角形的面积公式计算即可;
(3)设出点M,用勾股定理求出点M的坐标,从而求出MD,最后求出时间t;
(4)由∠PBF被BA平分,确定出过点B的直线BN的解析式,求出此直线和抛物线的交点即可.
【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,

∴,
∴抛物线解析式为y=﹣x2+x﹣2=﹣(x﹣2)2+;
(2)如图1,
过点A作AH∥y轴交BC于H,BE于G,
由(1)有,C(0,﹣2),
∵B(0,3),
∴直线BC解析式为y=x﹣2,
∵H(1,y)在直线BC上,
∴y=﹣,
∴H(1,﹣),
∵B(3,0),E(0,﹣1),
∴直线BE解析式为y=﹣x﹣1,
∴G(1,﹣),
∴GH=,
∵直线BE:y=﹣x﹣1与抛物线y=﹣x2+x﹣2相较于F,B,
∴F(,﹣),
∴S△FHB=GH×|xG﹣xF|+GH×|xB﹣xG|
=GH×|xB﹣xF|
=××(3﹣)
=.
(3)如图2,
由(1)有y=﹣x2+x﹣2,
∵D为抛物线的顶点,
∴D(2,),
∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,
∴设M(2,m),(m>),
∴OM2=m2+4,BM2=m2+1,AB2=9,
∵∠OMB=90°,
∴OM2+BM2=AB2,
∴m2+4+m2+1=9,
∴m=或m=﹣(舍),
∴M(0,),
∴MD=﹣,
∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,
∴t=﹣;
(4)存在点P,使∠PBF被BA平分,
如图3,
∴∠PBO=∠EBO,
∵E(0,﹣1),
∴在y轴上取一点N(0,1),
∵B(3,0),
∴直线BN的解析式为y=﹣x+1①,
∵点P在抛物线y=﹣x2+x﹣2②上,
联立①②得,或(舍),
∴P(,),
即:在x轴上方的抛物线上,存在点P,使得∠PBF被BA平分,P(,).
同课章节目录