中考数学压轴题解法探究
几何最值的存在性问题
【专题解析】
考题研究:
在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
解题攻略:
最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.?
两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).
三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).
两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.
解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.
解题思路:
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【真题精讲】
类型一:归入“两点之间的连线中,线段最短”
典例1:(2016·云南省昆明市)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
【解析】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;
(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;
(3)找出A的对称点A′,连接BA′,与x轴交点即为P.
【解答】解:(1)如图1所示:
(2)如图2所示:
(3)找出A的对称点A′(﹣3,﹣4),
连接BA′,与x轴交点即为P;
如图3所示:点P坐标为(2,0).
变式训练1:
(2016·山东省滨州市·10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
类型二:求两线段差的最大值问题(运用三角形两边之差小于第三边)
典例2:(2016·四川眉山)已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;www-2-1-cnjy-com
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.
【解析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;
(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;
(3)利用待定系数法确定出直线PA解析式,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,21cnjy.com
当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.
【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,
∵A(1,0)、B(0,3)、C(﹣4,0),
∴,
解得:a=﹣,b=﹣,c=3,
∴经过A、B、C三点的抛物线的解析式为y=﹣x2﹣x+3;
(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:
∵OB=3,OC=4,OA=1,
∴BC=AC=5,
当BP平行且等于AC时,四边形ACBP为菱形,
∴BP=AC=5,且点P到x轴的距离等于OB,
∴点P的坐标为(5,3),
当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,
则当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形;
(3)设直线PA的解析式为y=kx+b(k≠0),
∵A(1,0),P(5,3),
∴,
解得:k=,b=﹣,
∴直线PA的解析式为y=x﹣,
当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,
当点M与点P、A在同一直线上时,|PM﹣AM|=PA,
∴当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,
解方程组,得或,
∴点M的坐标为(1,0)或(﹣5,﹣)时,|PM﹣AM|的值最大,此时|PM﹣AM|的最大值为5.
【点评】此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键..
变式训练2:
(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示)
(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.
类型三:设未知数,建立函数取最大(小)值
典例3:(2016·广西百色·12分)正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.
(1)建立适当的平面直角坐标系,
①直接写出O、P、A三点坐标;
②求抛物线L的解析式;
(2)求△OAE与△OCE面积之和的最大值.
【解析】二次函数综合题.(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;
(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+SOCE关于m的函数解析式,根据二次函数的性质即可得出结论.
【解答】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.
①∵正方形OABC的边长为4,对角线相交于点P,
∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).
②设抛物线L的解析式为y=ax2+bx+c,
∵抛物线L经过O、P、A三点,
∴有,
解得:,
∴抛物线L的解析式为y=﹣+2x.
(2)∵点E是正方形内的抛物线上的动点,
∴设点E的坐标为(m,﹣+2m)(0<m<4),
∴S△OAE+SOCE=OA?yE+OC?xE=﹣m2+4m+2m=﹣(m﹣3)2+9,
∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.
变式训练3:
(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:
产品
每件售价(万元)
每件成本(万元)
每年其他费用(万元)
每年最大产销量(件)
甲
6
a
20
200
乙
20
10
40+0.05x2
80
其中a为常数,且3≤a≤5.
(1) 若产销甲、 乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;【版权所有:21教育】
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
【过关检测】
1. (2016·辽宁丹东·10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
2. (2016·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.2-1-c-n-j-y
3. (2016.山东济宁)如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).21教育名师原创作品
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
4. (2016·陕西)问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.21教育网
【参考答案】
变式训练参考答案:
变式训练1:
(2016·山东省滨州市·10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
【解析】平行四边形的判定与性质;角平分线的性质.(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.
【解答】解:(1)四边形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四边形EBGD是菱形.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,
在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2,
在RT△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3,
在RT△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC===10.
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值为10.
【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.www.21-cn-jy.com
变式训练2:
(2016河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.
填空:当点A位于 CB的延长线上 时,线段AC的长取得最大值,且最大值为 a+b (用含a,b的式子表示)21世纪教育网版权所有
(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.【来源:21·世纪·教育·网】
①请找出图中与BE相等的线段,并说明理由;
②直接写出线段BE长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.
【解析】三角形综合题.(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;
(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;
(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.
【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,
∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,
故答案为:CB的延长线上,a+b;
(2)①CD=BE,
理由:∵△ABD与△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
在△CAD与△EAB中,,
∴△CAD≌△EAB,
∴CD=BE;
②∵线段BE长的最大值=线段CD的最大值,
由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,
则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=AP=2,
∴最大值为2+3;
如图2,过P作PE⊥x轴于E,
∵△APN是等腰直角三角形,
∴PE=AE=,
∴OE=BO﹣﹣3=2﹣,
∴P(2﹣,).
【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.
变式训练3:
(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:
产品
每件售价(万元)
每件成本(万元)
每年其他费用(万元)
每年最大产销量(件)
甲
6
a
20
200
乙
20
10
40+0.05x2
80
其中a为常数,且3≤a≤5.
(1) 若产销甲、 乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
【考点】二次函数的应用,一次函数的应用
【答案】 (1)y1=(6-a)x-20(0<x≤200),y2=-0.05x2+10x-40(0<x≤80);(2) 产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品
【解析】解:(1) y1=(6-a)x-20(0<x≤200),y2=-0.05x2+10x-40(0<x≤80);
(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.
∴当x=200时,y1max=1180-200a(3≤a≤5)
乙产品:y2=-0.05x2+10x-40(0<x≤80)
∴当0<x≤80时,y2随x的增大而增大.
当x=80时,y2max=440(万元).
∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;
1180-200=440,解得a=3.7时,此时选择甲乙产品;
1180-200<440,解得3.7<a≤5时,此时选择乙产品.
∴当3≤a<3.7时,生产甲产品的利润高;
当a=3.7时,生产甲乙两种产品的利润相同;
当3.7<a≤5时,上产乙产品的利润高.
过关检测参考答案:
1. (2016·辽宁丹东·10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
【解析】二次函数的应用.(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.
(2)列出方程解方程组,再根据实际意义确定x的值.
(3)构建二次函数,利用二次函数性质解决问题.
【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),
得,
解得,
∴该函数的表达式为y=﹣0.5x+80,
(2)根据题意,得,
(﹣0.5x+80)(80+x)=6750,
解得,x1=10,x2=70
∵投入成本最低.
∴x2=70不满足题意,舍去.
∴增种果树10棵时,果园可以收获果实6750千克.
(3)根据题意,得
w=(﹣0.5x+80)(80+x)
=﹣0.5 x2+40 x+6400
=﹣0.5(x﹣40)2+7200
∵a=﹣0.5<0,则抛物线开口向下,函数有最大值
∴当x=40时,w最大值为7200千克.
∴当增种果树40棵时果园的最大产量是7200千克.
2. (2016·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【来源:21cnj*y.co*m】
【考点】二次函数综合题.
【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;
(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;
(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.
【解答】解:
(1)把B、C两点坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣2x﹣3;
(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,
在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,
∴A点坐标为(﹣1,0),
∴AB=3﹣(﹣1)=4,且OC=3,
∴S△ABC=AB?OC=×4×3=6,
∵B(3,0),C(0,﹣3),
∴直线BC解析式为y=x﹣3,
设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),
∵P点在第四限,
∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,
∴S△PBC=PM?OH+PM?HB=PM?(OH+HB)=PM?OB=PM,
∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,
∵PM=﹣x2+3x=﹣(x﹣)2+,
∴当x=时,PMmax=,则S△PBC=×=,
此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,
即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;
(3)如图2,设直线m交y轴于点N,交直线l于点G,
则∠AGP=∠GNC+∠GCN,
当△AGB和△NGC相似时,必有∠AGB=∠CGB,
又∠AGB+∠CGB=180°,
∴∠AGB=∠CGB=90°,
∴∠ACO=∠OBN,
在Rt△AON和Rt△NOB中
∴Rt△AON≌Rt△NOB(ASA),
∴ON=OA=1,
∴N点坐标为(0,﹣1),
设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,
∴直线m解析式为y=x﹣1,
即存在满足条件的直线m,其解析式为y=x﹣1.
【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.
3. (2016.山东济宁)如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).21·cn·jy·com
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
【解析】二次函数综合题.(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;2·1·c·n·j·y
(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;21·世纪*教育网
(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.
【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上
∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=
∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;
(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)
∴连接EB′交l于点P,如图所示
设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得
解得,
则函数解析式为y=﹣x+
把x=3代入解得y=,
∴点P坐标为(3,);
(3)∵y=﹣x+与x轴交于点D,
∴点D坐标为(7,0),
∵y=﹣x+与抛物线m的对称轴l交于点F,
∴点F坐标为(3,2),
求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,21*cnjy*com
设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,【出处:21教育名师】
设点Q的坐标为(a,),把点Q代入y=2x﹣14得
=2a﹣14
解得a1=9,a2=15.
∴点Q坐标为(9,4)或(15,16).
4. (2016·陕西)问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
【考点】四边形综合题.
【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;
(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;
(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.
【解答】解:(1)如图1,△ADC即为所求;
(2)存在,理由:作E关于CD的对称点E′,
作F关于BC的对称点F′,
连接E′F′,交BC于G,交CD于H,连接FG,EH,
则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,
由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,
∴AF′=6,AE′=8,
∴E′F′=10,EF=2,
∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,
∴在边BC、CD上分别存在点G、H,
使得四边形EFGH的周长最小,
最小值为2+10;
(3)能裁得,
理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,
∴∠1=∠2,
在△AEF与△BGF中,,
∴△AEF≌△BGF,
∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,
∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),
∴AF=BG=1,BF=AE=2,
∴DE=4,CG=5,
连接EG,
作△EFG关于EG的对称△EOG,
则四边形EFGO是正方形,∠EOG=90°,
以O为圆心,以EG为半径作⊙O,
则∠EHG=45°的点在⊙O上,
连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,
连接EH′GH′,则∠EH′G=45°,
此时,四边形EFGH′是要想裁得符合要求的面积最大的,
∴C在线段EG的垂直平分线设,
∴点F,O,H′,C在一条直线上,
∵EG=,
∴OF=EG=,
∵CF=2,
∴OC=,
∵OH′=OE=FG=,
∴OH′<OC,
∴点H′在矩形ABCD的内部,
∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,
这个部件的面积=EG?FH′=××(+)=5+,
∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.21*cnjy*com