2017年中考数学二轮专题复习讲义(12)探究性问题
【专题点拨】
所谓探究性问题,是指问题的条件或结论尚不明确,需通过探究去补充条件或完善结论的一类问题.
【解题策略】
从讨论问题入手→分析解决办法→进行实验探究→综合分析问题→得到结论
【典例解析】
类型一:规律型探究问题
例题1:(2016·山东潍坊·3分)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是 (2n﹣1,2n﹣1) .
【考点】一次函数图象上点的坐标特征;正方形的性质.
【分析】先求出B1、B2、B3的坐标,探究规律后即可解决问题.
【解答】解:∵y=x﹣1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,
∴Bn坐标(2n﹣1,2n﹣1).
故答案为(2n﹣1,2n﹣1).
变式训练1:
(2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 .
类型二: 条件探究型问题
例题2:(2016河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.
(1)求证:MD=ME;
(2)填空:
①若AB=6,当AD=2DM时,DE= 2 ;
②连接OD,OE,当∠A的度数为 60° 时,四边形ODME是菱形.
【考点】菱形的判定.
【分析】(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.
(2)①由DE∥AB,得=即可解决问题.
②当∠A=60°时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.
【解答】(1)证明:∵∠ABC=90°,AM=MC,
∴BM=AM=MC,
∴∠A=∠ABM,
∵四边形ABED是圆内接四边形,
∴∠ADE+∠ABE=180°,
又∠ADE+∠MDE=180°,
∴∠MDE=∠MBA,
同理证明:∠MED=∠A,
∴∠MDE=∠MED,
∴MD=ME.
(2)①由(1)可知,∠A=∠MDE,
∴DE∥AB,
∴=,
∵AD=2DM,
∴DM:MA=1:3,
∴DE=AB=×6=2.
故答案为2.
②当∠A=60°时,四边形ODME是菱形.
理由:连接OD、OE,
∵OA=OD,∠A=60°,
∴△AOD是等边三角形,
∴∠AOD=60°,
∵DE∥AB,
∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,
∴△ODE,△DEM都是等边三角形,
∴OD=OE=EM=DM,
∴四边形OEMD是菱形.
故答案为60°.
【点评】本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型.21教育网
变式训练2:
(2016·浙江省湖州市)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).【来源:21·世纪·教育·网】
(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究
如图3,若AD=3AB,探究得:的值为常数t,则t= .
类型三:结论探究型问题
例题3:如图,O为原点,反比例函数y=(x>0)的图象经过线段OA的端点A,作AB⊥x轴于点B,点A的坐标为(2,3).
(1)反比例函数的解析式为 y=(x>0) ;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC的中点E,
①求直线AE的函数表达式;
②若直线AE与x轴交于点M,与y轴交于点N,请你写出线段AN与线段ME的大小,并说明理由.
【考点】反比例函数与一次函数的交点问题.
【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k值,从而得出反比例函数解析式;
(2)根据点E为CD的中点,可找出点E的纵坐标,结合点E在反比例函数图象上即可求出点E的坐标,再由点A、E的坐标利用待定系数法即可求出直线AE的函数表达式;
(3)AN=ME,根据直线AE的函数表达式可求出点M的坐标,结合点A、E的坐标可得出点B、C的坐标,由此即可得知:点B、C为线段OM的三等分点,再结合平行线的性质即可得出点A、E为线段MN的三等分点,由此即可得出结论.
【解答】解:(1)∵点A(2,3)在反比例函数y=(x>0)的图象上,
∴k=2×3=6,
∴反比例函数的解析式为y=(x>0).
故答案为:y=(x>0).
(2)∵AB=CD,点E为线段CD的中点,
∴点E的纵坐标为,
将y=代入y=中,则有=,
解得:x=4,
∴点E的坐标为(4,).
设直线AE的表达式为y=mx+n,
将点A(2,3)、E(4,)代入y=mx+n中得:,
解得:,
∴直线AE的表达式为y=﹣x+.
(3)AN=ME,利用如下:
令y=﹣x+中y=0,则0=﹣x+,
解得:x=6,
∴点M的坐标为(6,0).
∵点A(2,3)、E(4,),
∴点B(2,0),点C(4,0),
∴点B、C为线段OM的三等分点,
∵AB∥CD(平移的性质),
∴点A、E为线段MN的三等分点,
∴AN=ME.
变式训练3:
(2016·湖北黄石·12分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.
类型四: 策略探究型问题
例题4:(2016·山东省济宁市·3分)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD=,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.
【考点】正方形的性质.
【分析】(1)根据正方形的性质以及勾股定理即可求得;
(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.
【解答】解:(1)∵四边形ABCD是正方形,
∴△ABD是等腰直角三角形,
∴2AB2=BD2,
∵BD=,
∴AB=1,
∴正方形ABCD的边长为1;
(2)CN=CM.
证明:∵CF=CA,AF是∠ACF的平分线,
∴CE⊥AF,
∴∠AEN=∠CBN=90°,
∵∠ANE=∠CNB,
∴∠BAF=∠BCN,
在△ABF和△CBN中,
,
∴△ABF≌△CBN(AAS),
∴AF=CN,
∵∠BAF=∠BCN,∠ACN=∠BCN,
∴∠BAF=∠OCM,
∵四边形ABCD是正方形,
∴AC⊥BD,
∴∠ABF=∠COM=90°,
∴△ABF∽△COM,
∴=,
∴==,
即CN=CM.
变式训练4:
(2016·黑龙江龙东·8分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
类型五: 动态探究型问题
例题5:(2016·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.www.21-cn-jy.com
【考点】二次函数综合题.
【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;
(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;21*cnjy*com
(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.
【解答】解:
(1)把B、C两点坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣2x﹣3;
(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,
在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,
∴A点坐标为(﹣1,0),
∴AB=3﹣(﹣1)=4,且OC=3,
∴S△ABC=AB?OC=×4×3=6,
∵B(3,0),C(0,﹣3),
∴直线BC解析式为y=x﹣3,
设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),
∵P点在第四限,
∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,
∴S△PBC=PM?OH+PM?HB=PM?(OH+HB)=PM?OB=PM,
∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,
∵PM=﹣x2+3x=﹣(x﹣)2+,
∴当x=时,PMmax=,则S△PBC=×=,
此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,
即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;
(3)如图2,设直线m交y轴于点N,交直线l于点G,
则∠AGP=∠GNC+∠GCN,
当△AGB和△NGC相似时,必有∠AGB=∠CGB,
又∠AGB+∠CGB=180°,
∴∠AGB=∠CGB=90°,
∴∠ACO=∠OBN,
在Rt△AON和Rt△NOB中
∴Rt△AON≌Rt△NOB(ASA),
∴ON=OA=1,
∴N点坐标为(0,﹣1),
设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,
∴直线m解析式为y=x﹣1,
即存在满足条件的直线m,其解析式为y=x﹣1.
【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.
变式训练5:
(2016·内蒙古包头)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.【来源:21cnj*y.co*m】
(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【能力检测】
1. (2016·四川内江)(9分)如图6所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.www-2-1-cnjy-com
(1)求证:D是BC的中点;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
2. (2016·山东省滨州市·10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
3. (2016·山东潍坊)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.【出处:21教育名师】
(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;
(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.
4. (2016·四川攀枝花)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.
(3)若⊙P与线段QC只有一个公共点,求t的取值范围.
5. (2016·陕西)问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
【参考答案】
变式训练1:
(2016·黑龙江齐齐哈尔·3分)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 (﹣,) .
【考点】位似变换;坐标与图形性质;矩形的性质.
【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得Bn的坐标,然后根据矩形的性质即可求得对角线交点的坐标.
【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,
∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,
∵OA=2,OC=1.
∵点B的坐标为(﹣2,1),
∴点B1的坐标为(﹣2×,1×),
∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,
∴B2(﹣2××,1××),
∴Bn(﹣2×,1×),
∵矩形AnOCnBn的对角线交点(﹣2××,1××),即(﹣,),
故答案为:(﹣,).
变式训练2:
(2016·浙江省湖州市)数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).21cnjy.com
(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究
如图3,若AD=3AB,探究得:的值为常数t,则t= .
【考点】几何变换综合题.
【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.2·1·c·n·j·y
(2)设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.
(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB?CM=AD?CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.21教育名师原创作品
【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,
∴∠D=∠B=60°,
∵AD=AB,
∴△ABC,△ACD都是等边三角形,
∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,
∵∠ECF=60°,
∴∠BCE+∠ACE=∠ACF+∠ACE=60°,
∴∠BCE=∠ACF,
在△BCE和△ACF中,
∴△BCE≌△ACF.
②∵△BCE≌△ACF,
∴BE=AF,
∴AE+AF=AE+BE=AB=AC.
(2)设DH=x,由由题意,CD=2x,CH=x,
∴AD=2AB=4x,
∴AH=AD﹣DH=3x,
∵CH⊥AD,
∴AC==2x,
∴AC2+CD2=AD2,
∴∠ACD=90°,
∴∠BAC=∠ACD=90°,
∴∠CAD=30°,
∴∠ACH=60°,
∵∠ECF=60°,
∴∠HCF=∠ACE,
∴△ACE∽△HCF,
∴==2,
∴AE=2FH.
(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.
∵∠ECF+∠EAF=180°,
∴∠AEC+∠AFC=180°,
∵∠AFC+∠CFN=180°,
∴∠CFN=∠AEC,∵∠M=∠CNF=90°,
∴△CFN∽△CEM,
∴=,
∵AB?CM=AD?CN,AD=3AB,
∴CM=3CN,
∴==,设CN=a,FN=b,则CM=3a,EM=3b,
∵∠MAH=60°,∠M=90°,
∴∠AHM=∠CHN=30°,
∴HC=2a,HM=a,HN=a,
∴AM=a,AH=a,
∴AC==a,
AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,21*cnjy*com
∴==.
故答案为.
变式训练3:
(2016·湖北黄石·12分)在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.2-1-c-n-j-y
【分析】(1)根据轴对称的性质可得∠EAF=∠DAE,AD=AF,再求出∠BAC=∠DAF,然后根据两边对应成比例,夹角相等两三角形相似证明;
(2)根据轴对称的性质可得EF=DE,AF=AD,再求出∠BAD=∠CAF,然后利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理证明即可;
(3)作点D关于AE的对称点F,连接EF、CF,根据轴对称的性质可得EF=DE,AF=AD,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠ECF=90°,最后利用勾股定理证明即可.
【解答】证明:(1)∵点D关于直线AE的对称点为F,
∴∠EAF=∠DAE,AD=AF,
又∵∠BAC=2∠DAE,
∴∠BAC=∠DAF,
∵AB=AC,
∴=,
∴△ADF∽△ABC;
(2)∵点D关于直线AE的对称点为F,
∴EF=DE,AF=AD,
∵α=45°,
∴∠BAD=90°﹣∠CAD,
∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,
∴∠BAD=∠CAF,
在△ABD和△ACF中,,
∴△ABD≌△ACF(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,
所以,DE2=BD2+CE2;
(3)DE2=BD2+CE2还能成立.
理由如下:作点D关于AE的对称点F,连接EF、CF,
由轴对称的性质得,EF=DE,AF=AD,
∵α=45°,
∴∠BAD=90°﹣∠CAD,
∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,
∴∠BAD=∠CAF,
在△ABD和△ACF中,,
∴△ABD≌△ACF(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,
在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,
所以,DE2=BD2+CE2.
【点评】本题是相似形综合题,主要利用了轴对称的性质,相似三角形的判定,同角的余角相等的性质,全等三角形的判定与性质,勾股定理,此类题目,小题间的思路相同是解题的关键.
变式训练4:
(2016·黑龙江龙东·8分)已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
【考点】四边形综合题.
【分析】(1)由△AOE≌△COF即可得出结论.
(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.
图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.
【解答】解:(1)∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
,
∴△AOE≌△COF,
∴OE=OF.
(2)图2中的结论为:CF=OE+AE.
图3中的结论为:CF=OE﹣AE.
选图2中的结论证明如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
,
∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在RT△EFG中,∵EO=OG,
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE.
选图3的结论证明如下:
延长EO交FC的延长线于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,
∴△AOE≌△COG,
∴OE=OG,AE=CG,
在RT△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG﹣CG,
∴CF=OE﹣AE.
变式训练5:
(2016·内蒙古包头)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.21世纪教育网版权所有
(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?【版权所有:21教育】
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【考点】二次函数综合题.
【分析】(1)用待定系数法求出抛物线解析式;
(2)先求出GH,点F的坐标,用三角形的面积公式计算即可;
(3)设出点M,用勾股定理求出点M的坐标,从而求出MD,最后求出时间t;
(4)由∠PBF被BA平分,确定出过点B的直线BN的解析式,求出此直线和抛物线的交点即可.
【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,
∴
∴,
∴抛物线解析式为y=﹣x2+x﹣2=﹣(x﹣2)2+;
(2)如图1,
过点A作AH∥y轴交BC于H,BE于G,
由(1)有,C(0,﹣2),
∵B(0,3),
∴直线BC解析式为y=x﹣2,
∵H(1,y)在直线BC上,
∴y=﹣,
∴H(1,﹣),
∵B(3,0),E(0,﹣1),
∴直线BE解析式为y=﹣x﹣1,
∴G(1,﹣),
∴GH=,
∵直线BE:y=﹣x﹣1与抛物线y=﹣x2+x﹣2相较于F,B,
∴F(,﹣),
∴S△FHB=GH×|xG﹣xF|+GH×|xB﹣xG|
=GH×|xB﹣xF|
=××(3﹣)
=.
(3)如图2,
由(1)有y=﹣x2+x﹣2,
∵D为抛物线的顶点,
∴D(2,),
∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,
∴设M(2,m),(m>),
∴OM2=m2+4,BM2=m2+1,AB2=9,
∵∠OMB=90°,
∴OM2+BM2=AB2,
∴m2+4+m2+1=9,
∴m=或m=﹣(舍),
∴M(0,),
∴MD=﹣,
∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,
∴t=﹣;
(4)存在点P,使∠PBF被BA平分,
如图3,
∴∠PBO=∠EBO,
∵E(0,﹣1),
∴在y轴上取一点N(0,1),
∵B(3,0),
∴直线BN的解析式为y=﹣x+1①,
∵点P在抛物线y=﹣x2+x﹣2②上,
联立①②得,或(舍),
∴P(,),
即:在x轴上方的抛物线上,存在点P,使得∠PBF被BA平分,P(,).
【能力检测】
1. (2016·四川内江)(9分)如图6所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
[考点]三角形例行,特殊四边形的性质与判定。
(1)证明:∵点E是AD的中点,∴AE=DE.
∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.
∴△EAF≌△EDC.
∴AF=DC.
∵AF=BD,
∴BD=DC,即D是BC的中点.
(2)四边形AFBD是矩形.证明如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形.
∵AB=AC,又由(1)可知D是BC的中点,
∴AD⊥BC.
∴□AFBD是矩形.
2. (2016·山东省滨州市·10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
【考点】平行四边形的判定与性质;角平分线的性质.
【分析】(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.
【解答】解:(1)四边形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四边形EBGD是菱形.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,
在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2,
在RT△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3,
在RT△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC===10.
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值为10.
【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.
3. (2016·山东潍坊)如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.
(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=AC;
(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3时,求旋转角的大小并指明旋转方向.
【考点】旋转的性质;菱形的性质.
【分析】(1)连接BD,证明△ABD为等边三角形,根据等腰三角形的三线合一得到AE=EB,根据相似三角形的性质解答即可;
(2)分∠EDF顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可.
【解答】(1)证明:如图1,连接BD,交AC于O,
在菱形ABCD中,∠BAD=60°,AD=AB,
∴△ABD为等边三角形,
∵DE⊥AB,
∴AE=EB,
∵AB∥DC,
∴==,
同理, =,
∴MN=AC;
(2)解:∵AB∥DC,∠BAD=60°,
∴∠ADC=120°,又∠ADE=∠CDF=30°,
∴∠EDF=60°,
当∠EDF顺时针旋转时,
由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,
DE=DF=,∠DEG=∠DFP=90°,
在△DEG和△DFP中,
,
∴△DEG≌△DFP,
∴DG=DP,
∴△DGP为等边三角形,
∴△DGP的面积=DG2=3,
解得,DG=2,
则cos∠EDG==,
∴∠EDG=60°,
∴当顺时针旋转60°时,△DGP的面积等于3,
同理可得,当逆时针旋转60°时,△DGP的面积也等于3,
综上所述,将△EDF以点D为旋转中心,顺时针或逆时针旋转60°时,△DGP的面积等于3.
4. (2016·四川攀枝花)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.
(3)若⊙P与线段QC只有一个公共点,求t的取值范围.
【考点】圆的综合题.
【分析】(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;21·cn·jy·com
(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;
(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.
【解答】解:(1)∵OA=6,OB=8,
∴由勾股定理可求得:AB=10,
由题意知:OQ=AP=t,
∴AC=2t,
∵AC是⊙P的直径,
∴∠CDA=90°,
∴CD∥OB,
∴△ACD∽△ABO,
∴,
∴AD=,
当Q与D重合时,
AD+OQ=OA,
∴+t=6,
∴t=;
(2)当⊙Q经过A点时,如图1,
OQ=OA﹣QA=4,
∴t==4s,
∴PA=4,
∴BP=AB﹣PA=6,
过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,
连接PF,
∴PE∥OA,
∴△PEB∽△AOB,
∴,
∴PE=,
∴由勾股定理可求得:EF=,
由垂径定理可求知:FG=2EF=;
(3)当QC与⊙P相切时,如图2,
此时∠QCA=90°,
∵OQ=AP=t,
∴AQ=6﹣t,AC=2t,
∵∠A=∠A,
∠QCA=∠ABO,
∴△AQC∽△ABO,
∴,
∴,
∴t=,
∴当0<t≤时,⊙P与QC只有一个交点,
当QC⊥OA时,
此时Q与D重合,
由(1)可知:t=,
∴当<t≤5时,⊙P与QC只有一个交点,
综上所述,当,⊙P与QC只有一个交点,t的取值范围为:0<t≤或<t≤5.
【点评】本题考查圆的综合问题,涉及圆的切线判定,圆周角定理,相似三角形的判定与性质,学生需要根据题意画出相应的图形来分析,并且能综合运用所学知识进行解答.21·世纪*教育网
5. (2016·陕西)问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
【考点】四边形综合题.
【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;
(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;
(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.
【解答】解:(1)如图1,△ADC即为所求;
(2)存在,理由:作E关于CD的对称点E′,
作F关于BC的对称点F′,
连接E′F′,交BC于G,交CD于H,连接FG,EH,
则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,
由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,
∴AF′=6,AE′=8,
∴E′F′=10,EF=2,
∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,
∴在边BC、CD上分别存在点G、H,
使得四边形EFGH的周长最小,
最小值为2+10;
(3)能裁得,
理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,
∴∠1=∠2,
在△AEF与△BGF中,,
∴△AEF≌△BGF,
∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,
∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),
∴AF=BG=1,BF=AE=2,
∴DE=4,CG=5,
连接EG,
作△EFG关于EG的对称△EOG,
则四边形EFGO是正方形,∠EOG=90°,
以O为圆心,以EG为半径作⊙O,
则∠EHG=45°的点在⊙O上,
连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,
连接EH′GH′,则∠EH′G=45°,
此时,四边形EFGH′是要想裁得符合要求的面积最大的,
∴C在线段EG的垂直平分线设,
∴点F,O,H′,C在一条直线上,
∵EG=,
∴OF=EG=,
∵CF=2,
∴OC=,
∵OH′=OE=FG=,
∴OH′<OC,
∴点H′在矩形ABCD的内部,
∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,
这个部件的面积=EG?FH′=××(+)=5+,
∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.